Strong solvability in Sobolev spaces W-2,W-p(Omega) is proved for the regular oblique derivative problem for second order uniformly elliptic operators with VMO-principal coefficients. The results are applied to the study of degenerate (tangential) oblique derivative problem in the case of neutral vector field on the boundary.

Oblique derivative problem for uniformly elliptic operators with VMO coefficients and applications / Maugeri, A; Palagachev, Dk; Vitanza, C. - In: COMPTES RENDUS DE L'ACADÉMIE DES SCIENCES. SÉRIE 1, MATHÉMATIQUE. - ISSN 0764-4442. - STAMPA. - 327:1(1998), pp. 53-58. [10.1016/S0764-4442(98)80102-X]

Oblique derivative problem for uniformly elliptic operators with VMO coefficients and applications

Palagachev, DK;
1998-01-01

Abstract

Strong solvability in Sobolev spaces W-2,W-p(Omega) is proved for the regular oblique derivative problem for second order uniformly elliptic operators with VMO-principal coefficients. The results are applied to the study of degenerate (tangential) oblique derivative problem in the case of neutral vector field on the boundary.
1998
http://www.sciencedirect.com/science/article/pii/S076444429880102X
Oblique derivative problem for uniformly elliptic operators with VMO coefficients and applications / Maugeri, A; Palagachev, Dk; Vitanza, C. - In: COMPTES RENDUS DE L'ACADÉMIE DES SCIENCES. SÉRIE 1, MATHÉMATIQUE. - ISSN 0764-4442. - STAMPA. - 327:1(1998), pp. 53-58. [10.1016/S0764-4442(98)80102-X]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/11774
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact