The recent trends in optimisation of sustainability of production processes requires, amongst all the activities, a continuous detection and correction of process behaviours, monitoring those parameters critical to performance. Detection of special causes of variations is a basic task in manufacturing, that has to be performed continuously to maintain any process stable as well as predictable. In this paper, a contribution to automate performance control is presented, based on synthesizing Cellular Neural Networks as associative memories for pro-actively recognizing unnatural behaviours. As an example, a test case is developed by considering abnormal cyclic behaviours given by sinusoidal signals. For this purpose, a CNN is synthesized for an associative memory, to recognize these unnatural situations. A robustness analysis of the synthesized network is then developed in the presence of unnatural behaviours in the form of input noises. The behaviour of the designed circuit is illustrated in detail.

Performance control for manufacturing sustainability: a cellular neural network-based approach / Carnimeo, Leonarda; Dassisti, Michele - In: Recent Researches in Automatic Control and Electronics : proceedings of the 14th International conference on automatic control, modelling & simulation (ACMOS '12) : proceedings of the 11th International conference on microelectronics, nanoelectronics, optoelectronics (MINO '12) : Saint Malo & Mont Saint-Michel, France, April 2-4, 2012 / [a cura di] Vincenzo Niola, Michel Kadoch, Alexander Zemliak. - STAMPA. - Athens, Greece : WSEAS Press, 2012. - ISBN 978-1-61804-080-0. - pp. 122-127 (( convegno 4th international conference on Automatic Control, Modelling & Simulation tenutosi a Saint Malo &Mont Saint Michel, France nel 2-4 april 2012.

Performance control for manufacturing sustainability: a cellular neural network-based approach

Carnimeo, Leonarda;Dassisti, Michele
2012-01-01

Abstract

The recent trends in optimisation of sustainability of production processes requires, amongst all the activities, a continuous detection and correction of process behaviours, monitoring those parameters critical to performance. Detection of special causes of variations is a basic task in manufacturing, that has to be performed continuously to maintain any process stable as well as predictable. In this paper, a contribution to automate performance control is presented, based on synthesizing Cellular Neural Networks as associative memories for pro-actively recognizing unnatural behaviours. As an example, a test case is developed by considering abnormal cyclic behaviours given by sinusoidal signals. For this purpose, a CNN is synthesized for an associative memory, to recognize these unnatural situations. A robustness analysis of the synthesized network is then developed in the presence of unnatural behaviours in the form of input noises. The behaviour of the designed circuit is illustrated in detail.
2012
Recent Researches in Automatic Control and Electronics : proceedings of the 14th International conference on automatic control, modelling & simulation (ACMOS '12) : proceedings of the 11th International conference on microelectronics, nanoelectronics, optoelectronics (MINO '12) : Saint Malo & Mont Saint-Michel, France, April 2-4, 2012
978-1-61804-080-0
WSEAS Press
Performance control for manufacturing sustainability: a cellular neural network-based approach / Carnimeo, Leonarda; Dassisti, Michele - In: Recent Researches in Automatic Control and Electronics : proceedings of the 14th International conference on automatic control, modelling & simulation (ACMOS '12) : proceedings of the 11th International conference on microelectronics, nanoelectronics, optoelectronics (MINO '12) : Saint Malo & Mont Saint-Michel, France, April 2-4, 2012 / [a cura di] Vincenzo Niola, Michel Kadoch, Alexander Zemliak. - STAMPA. - Athens, Greece : WSEAS Press, 2012. - ISBN 978-1-61804-080-0. - pp. 122-127 (( convegno 4th international conference on Automatic Control, Modelling & Simulation tenutosi a Saint Malo &Mont Saint Michel, France nel 2-4 april 2012.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/12232
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact