In this paper, we present the theoretical investigation, design, and simulation of a new LiNbO3 guided-wave optical correlator suitable for real-time SAR applications. It is based on a complex interferometric structure, involving four aperiodic phase-reversal traveling wave modulators. The electrode structure is designed in order to reproduce the product signal between the received and reference voltages, which is then time-integrated by a suitable photodetector. The filtered signal outgoing from the detector is proportional to the final correlation function, which can be electronically registered and multiplexed on a two- dimensional matrix by sum-and-shift procedure. Thus, the processor performs the correlation function between the reference signal and the received signal when they are applied to the laser diode and to the electrodes as driving voltage, respectively. Comparisons between two different LiNbO3 waveguide fabrication techniques, i.e., proton exchange and titanium indiffusion, have been carried out in terms of circuit performances in order to reconstruct the SAR images.

Design of an interferometric guided-wave correlator for radar applications

Mario Nicola Armenise;Vittorio M. N. Passaro;
1993-01-01

Abstract

In this paper, we present the theoretical investigation, design, and simulation of a new LiNbO3 guided-wave optical correlator suitable for real-time SAR applications. It is based on a complex interferometric structure, involving four aperiodic phase-reversal traveling wave modulators. The electrode structure is designed in order to reproduce the product signal between the received and reference voltages, which is then time-integrated by a suitable photodetector. The filtered signal outgoing from the detector is proportional to the final correlation function, which can be electronically registered and multiplexed on a two- dimensional matrix by sum-and-shift procedure. Thus, the processor performs the correlation function between the reference signal and the received signal when they are applied to the laser diode and to the electrodes as driving voltage, respectively. Comparisons between two different LiNbO3 waveguide fabrication techniques, i.e., proton exchange and titanium indiffusion, have been carried out in terms of circuit performances in order to reconstruct the SAR images.
Optical Engineering and Photonics in Aerospace Sensing
0-8194-1189-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/13995
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact