Background: New sources of stem cells in adult organisms are constantly emerging. Postnatal Mesenchymal Stem Cells (MSCs), are the most promising support to perform an effective regenerative medicine: such cells have the ability to differentiate into several lineages, such as osteoblasts and chondroblasts, providing novel strategies to improve different complex treatments, during bone regeneration. 3D-printed biomaterials can be designed with geometry aimed to induce stem cells to differentiate towards specific lineage. Objective: The interaction between stem cells easy to isolate and engineered 3D-printed scaffolds can translate the tissue bio-engineering into bone regenerative surgery. For those reasons, to better identify the complexity represented by the activities and responses of MSCs requires the advance of new target therapies which are not current in endocrine, metabolic and immune disorders and yet to be developed. Method: This topical review briefly focuses on the new approaches of translational medicine with the use of MSCs and scaffolds engineered with the aid of 3D-printing technology, highlights the osteogenic functions and addresses their applications across the breadth of regenerative medicine. Results: The application of bone constructs consisting of the engineered scaffold and MSCs as well as the aspects related to the optimal scaffold geometry that favours the best MSCs differentiation and the improvement of concepts as “sensing surface” were also discussed. Conclusion: Regenerative surgery is largely growing in the field of translational medicine. The use of new sources of MSCs and the improvement of new concepts of bio-engineered scaffolds will certainly be the next step of customized medicine.

Recent advances in endocrine, metabolic and immune disorders: Mesenchymal stem cells (MSCs) and engineered scaffolds / Cantore, Stefania; Crincoli, Vito; Boccaccio, Antonio; Uva, Antonio E.; Fiorentino, Michele; Monno, Giuseppe; Bollero, Patrizio; Derla, Chiara; Fabiano, Francesca; Ballini, Andrea; Santacroce, Luigi. - In: ENDOCRINE, METABOLIC & IMMUNE DISORDERS DRUG TARGETS. - ISSN 1871-5303. - STAMPA. - 18:5(2018), pp. 466-469. [10.2174/1871530318666180423102905]

Recent advances in endocrine, metabolic and immune disorders: Mesenchymal stem cells (MSCs) and engineered scaffolds

Boccaccio, Antonio;Uva, Antonio E.;Fiorentino, Michele;Monno, Giuseppe;
2018-01-01

Abstract

Background: New sources of stem cells in adult organisms are constantly emerging. Postnatal Mesenchymal Stem Cells (MSCs), are the most promising support to perform an effective regenerative medicine: such cells have the ability to differentiate into several lineages, such as osteoblasts and chondroblasts, providing novel strategies to improve different complex treatments, during bone regeneration. 3D-printed biomaterials can be designed with geometry aimed to induce stem cells to differentiate towards specific lineage. Objective: The interaction between stem cells easy to isolate and engineered 3D-printed scaffolds can translate the tissue bio-engineering into bone regenerative surgery. For those reasons, to better identify the complexity represented by the activities and responses of MSCs requires the advance of new target therapies which are not current in endocrine, metabolic and immune disorders and yet to be developed. Method: This topical review briefly focuses on the new approaches of translational medicine with the use of MSCs and scaffolds engineered with the aid of 3D-printing technology, highlights the osteogenic functions and addresses their applications across the breadth of regenerative medicine. Results: The application of bone constructs consisting of the engineered scaffold and MSCs as well as the aspects related to the optimal scaffold geometry that favours the best MSCs differentiation and the improvement of concepts as “sensing surface” were also discussed. Conclusion: Regenerative surgery is largely growing in the field of translational medicine. The use of new sources of MSCs and the improvement of new concepts of bio-engineered scaffolds will certainly be the next step of customized medicine.
2018
http://www.eurekaselect.com/161473/article
Recent advances in endocrine, metabolic and immune disorders: Mesenchymal stem cells (MSCs) and engineered scaffolds / Cantore, Stefania; Crincoli, Vito; Boccaccio, Antonio; Uva, Antonio E.; Fiorentino, Michele; Monno, Giuseppe; Bollero, Patrizio; Derla, Chiara; Fabiano, Francesca; Ballini, Andrea; Santacroce, Luigi. - In: ENDOCRINE, METABOLIC & IMMUNE DISORDERS DRUG TARGETS. - ISSN 1871-5303. - STAMPA. - 18:5(2018), pp. 466-469. [10.2174/1871530318666180423102905]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/149567
Citazioni
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 48
social impact