We focus on the use of advanced multi-temporal interferometry (MTI) for mapping and monitoring of ground deformations caused by open-cast mining and hydrocarbon production. We also show how MTI can be exploited to monitor the stability of infrastructure in adjacent areas. Open-cast mines represent a good target for MTI, because they are (1) often very large (from few to tens of km2); (2) free of or covered by sparse vegetation; (3) require long-term regular monitoring. The operational deformation monitoring via MTI can now rely on free of charge medium-resolution Sentinel-1 data, consistently and regularly acquired by the European Space Agency (ESA) since 2014. To illustrate the application potential of MTI based on Sentinel-1 data, we present the case study of the Belchatow mine (Poland), one of the largest open-cast mines in Europe. We stress that thanks to wide-area coverage; space-borne MTI represents a cost-effective approach to monitoring ground/slope instability hazards in large open pits, as well as the stability of the associated engineering structures and facilities. On-land oil and gas fields are also often huge and ground deformations induced by their exploitations can be profitably targeted by MTI. This is illustrated through an example of MTI application from the Middle East that relies on high-resolution (3 m) radar data. The example highlights the possibility of obtaining extremely dense (spatially continuous) information, which is important for monitoring complex ground deformations caused by oil field exploitation.
Advanced satellite radar interferometry for deformation monitoring and infrastructure control in open-cast mines and oil/gas fields / Wasowski, Janusz; Bovenga, Fabio; Nutricato, Raffaele; Nitti, Davide Oscar; Chiaradia, Maria Teresa. - In: INNOVATIVE INFRASTRUCTURE SOLUTIONS. - ISSN 2364-4176. - STAMPA. - 3:1(2018). [10.1007/s41062-018-0176-x]
Advanced satellite radar interferometry for deformation monitoring and infrastructure control in open-cast mines and oil/gas fields
Chiaradia, Maria Teresa
2018-01-01
Abstract
We focus on the use of advanced multi-temporal interferometry (MTI) for mapping and monitoring of ground deformations caused by open-cast mining and hydrocarbon production. We also show how MTI can be exploited to monitor the stability of infrastructure in adjacent areas. Open-cast mines represent a good target for MTI, because they are (1) often very large (from few to tens of km2); (2) free of or covered by sparse vegetation; (3) require long-term regular monitoring. The operational deformation monitoring via MTI can now rely on free of charge medium-resolution Sentinel-1 data, consistently and regularly acquired by the European Space Agency (ESA) since 2014. To illustrate the application potential of MTI based on Sentinel-1 data, we present the case study of the Belchatow mine (Poland), one of the largest open-cast mines in Europe. We stress that thanks to wide-area coverage; space-borne MTI represents a cost-effective approach to monitoring ground/slope instability hazards in large open pits, as well as the stability of the associated engineering structures and facilities. On-land oil and gas fields are also often huge and ground deformations induced by their exploitations can be profitably targeted by MTI. This is illustrated through an example of MTI application from the Middle East that relies on high-resolution (3 m) radar data. The example highlights the possibility of obtaining extremely dense (spatially continuous) information, which is important for monitoring complex ground deformations caused by oil field exploitation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.