The results of numerical experiments aimed at investigating the topology of the vortex structures shed by an oscillating foil of finite span are described. The motion of the foil and its geometry are chosen to mimic the tail of a fish using the carangiform swimming. The numerical results have been compared with the flow visualizations of Freymuth [J. Fluids Eng. 111, 217 (1989)] and those of von Ellenrieder [J. Fluid Mech.490, 129 (2003)]. The results show that a vortex ring is shed by the oscillating foil every half a cycle. The dynamics of the vortex rings depends on the Strouhal number St. For relatively small values of St, the interaction between adjacent rings is weak and they are mainly convected downstream by the free stream. On the other hand, for relatively large values of St, a strong interaction among adjacent rings takes place and the present results suggest the existence of reconnection phenomena, which create pairs of longitudinal counter-rotating vortices. © 2005 American Institute of Physics.
Numerical experiments on flapping foils mimicking fish-like locomotion / Blondeaux, Paolo; Fornarelli, Francesco; Guglielmini, Laura; Triantafyllou, Michael S.; Verzicco, Roberto. - In: PHYSICS OF FLUIDS. - ISSN 1070-6631. - STAMPA. - 17:11(2005). [10.1063/1.2131923]
Numerical experiments on flapping foils mimicking fish-like locomotion
Fornarelli, Francesco;Verzicco, Roberto
2005-01-01
Abstract
The results of numerical experiments aimed at investigating the topology of the vortex structures shed by an oscillating foil of finite span are described. The motion of the foil and its geometry are chosen to mimic the tail of a fish using the carangiform swimming. The numerical results have been compared with the flow visualizations of Freymuth [J. Fluids Eng. 111, 217 (1989)] and those of von Ellenrieder [J. Fluid Mech.490, 129 (2003)]. The results show that a vortex ring is shed by the oscillating foil every half a cycle. The dynamics of the vortex rings depends on the Strouhal number St. For relatively small values of St, the interaction between adjacent rings is weak and they are mainly convected downstream by the free stream. On the other hand, for relatively large values of St, a strong interaction among adjacent rings takes place and the present results suggest the existence of reconnection phenomena, which create pairs of longitudinal counter-rotating vortices. © 2005 American Institute of Physics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.