An innovative Counter-Flow Sand Heat Exchanger (CFS-HX) is proposed, which makes use of very small solid particles as intermediate medium to perform heat transfer between two gas flows at different temperature. The potential of the CFS-HX was already demonstrated by the authors, both theoretically and experimentally. In this work, a parametric study has been employed in order to explore the capabilities of the proposed heat exchanger. A 1D model (validated by experiments) has been extensively used to perform sensitivity analyses with respect to the major design parameters, i.e.: specific heats, gas and sand densities, particle diameter, prescribed efficiency. Pipe length to obtain a prescribed heat exchanger efficiency has been calculated for a large number of configurations and results have been compared with a baseline case. The proposed computations show that a high efficient heat exchange can be obtained with relatively short pipes and with negligible pressure drop.

Parametric study of an innovative Counter-Flow Heat Exchanger

AMIRANTE, Riccardo
2010

Abstract

An innovative Counter-Flow Sand Heat Exchanger (CFS-HX) is proposed, which makes use of very small solid particles as intermediate medium to perform heat transfer between two gas flows at different temperature. The potential of the CFS-HX was already demonstrated by the authors, both theoretically and experimentally. In this work, a parametric study has been employed in order to explore the capabilities of the proposed heat exchanger. A 1D model (validated by experiments) has been extensively used to perform sensitivity analyses with respect to the major design parameters, i.e.: specific heats, gas and sand densities, particle diameter, prescribed efficiency. Pipe length to obtain a prescribed heat exchanger efficiency has been calculated for a large number of configurations and results have been compared with a baseline case. The proposed computations show that a high efficient heat exchange can be obtained with relatively short pipes and with negligible pressure drop.
ASME 2010 10th Biennal Conference on Engineering Systems Design and Analysis (ESDA 2010)
978-079184916-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11589/16757
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact