The present work aims at illustrating how the joint use of monitoring data and numerical models can be beneficial in understanding coastal processes. In the first part, we show and discuss an annual dataset provided by a monitoring system installed in a vulnerable coastal basin located in Southern Italy, subjected to human and industrial pressures. The collected data have been processed and analysed to detect the temporal evolution of the most representative parameters of the inspected site and have been compared with recordings from previous years to investigate recursive trends. In the second part, to demonstrate to what extent such type of monitoring actions is necessary and useful, the same data have been used to calibrate and run a 3D hydrodynamic model. After this, a reliable circulation pattern in the basin has been reproduced. Successively, an oil pollution transport model has been added to the hydrodynamic model, with the aim to present the response of the basin to some hypothetical cases of oil spills, caused by a ship failure. It is evident that the profitable prediction of the hydrodynamic processes and the transport and dispersion of contaminants strictly depends on the quality and reliability of the input data as well as on the calibration made.

Monitoring Systems and Numerical Models to Study Coastal Sites / Armenio, Elvira; Meftah, Mouldi Ben; De Padova, Diana; De Serio, Francesca; Mossa, Michele. - In: SENSORS. - ISSN 1424-8220. - ELETTRONICO. - 19:7(2019). [10.3390/s19071552]

Monitoring Systems and Numerical Models to Study Coastal Sites

Armenio, Elvira;Meftah, Mouldi Ben;De Padova, Diana;De Serio, Francesca;Mossa, Michele
2019-01-01

Abstract

The present work aims at illustrating how the joint use of monitoring data and numerical models can be beneficial in understanding coastal processes. In the first part, we show and discuss an annual dataset provided by a monitoring system installed in a vulnerable coastal basin located in Southern Italy, subjected to human and industrial pressures. The collected data have been processed and analysed to detect the temporal evolution of the most representative parameters of the inspected site and have been compared with recordings from previous years to investigate recursive trends. In the second part, to demonstrate to what extent such type of monitoring actions is necessary and useful, the same data have been used to calibrate and run a 3D hydrodynamic model. After this, a reliable circulation pattern in the basin has been reproduced. Successively, an oil pollution transport model has been added to the hydrodynamic model, with the aim to present the response of the basin to some hypothetical cases of oil spills, caused by a ship failure. It is evident that the profitable prediction of the hydrodynamic processes and the transport and dispersion of contaminants strictly depends on the quality and reliability of the input data as well as on the calibration made.
2019
Monitoring Systems and Numerical Models to Study Coastal Sites / Armenio, Elvira; Meftah, Mouldi Ben; De Padova, Diana; De Serio, Francesca; Mossa, Michele. - In: SENSORS. - ISSN 1424-8220. - ELETTRONICO. - 19:7(2019). [10.3390/s19071552]
File in questo prodotto:
File Dimensione Formato  
sensors-19-01552-v2.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/169387
Citazioni
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact