The knowledge of flow, mass, and heat transport phenomena in fractured rocks represents an important issue in many situations of science and engineering, such as the groundwater resource management, fractured petroleum reservoirs, nuclear waste disposal, as well as geothermal energy development. Experimental data obtained under controlled conditions such as in laboratory increase the knowledge of the fundamental physics that interest the flow and transport in fracture media and allow us to investigate the behavioral differences between fracture and porous medium. An artificially fractured rock sample of parallelepiped shape (0.60 × 0.80 × 0.08 m3) has been created, and the flow, mass, and heat transport behavior have been observed. The carried out experiments show the existence of non-Darcian flow regime that cannot be neglected. The latter influences the mass transport behavior giving rise to a delay in mass migration, enhancing the nonequilibrium behavior, whereas the dispersion phenomena seem not be influenced. Heat transport shows a very different behavior compared to mass transport. Convective thermal velocity is lower than mass velocity, whereas thermal dispersion is higher than solute dispersion.
Fluid Flow, Mass, and Heat Transport Laboratory Experiments in Artificially Fractured Rock / Pastore, Nicola - In: Hydrology of artificial and controlled experiment / [a cura di] Jiu-Fu Liu; Wei-Zu Gu. - STAMPA. - London : IntechOpen, 2018. - ISBN 978-1-78923-558-6. - pp. 197-215 [10.5772/intechopen.74259]
Fluid Flow, Mass, and Heat Transport Laboratory Experiments in Artificially Fractured Rock
Nicola Pastore
2018-01-01
Abstract
The knowledge of flow, mass, and heat transport phenomena in fractured rocks represents an important issue in many situations of science and engineering, such as the groundwater resource management, fractured petroleum reservoirs, nuclear waste disposal, as well as geothermal energy development. Experimental data obtained under controlled conditions such as in laboratory increase the knowledge of the fundamental physics that interest the flow and transport in fracture media and allow us to investigate the behavioral differences between fracture and porous medium. An artificially fractured rock sample of parallelepiped shape (0.60 × 0.80 × 0.08 m3) has been created, and the flow, mass, and heat transport behavior have been observed. The carried out experiments show the existence of non-Darcian flow regime that cannot be neglected. The latter influences the mass transport behavior giving rise to a delay in mass migration, enhancing the nonequilibrium behavior, whereas the dispersion phenomena seem not be influenced. Heat transport shows a very different behavior compared to mass transport. Convective thermal velocity is lower than mass velocity, whereas thermal dispersion is higher than solute dispersion.File | Dimensione | Formato | |
---|---|---|---|
59414.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.