We prove existence of harmonic coordinates for the nonlinear Laplacian of a Finsler manifold and apply them in a proof of the Myers–Steenrod theorem for Finsler manifolds. Different from the Riemannian case, these coordinates are not suitable for studying optimal regularity of the fundamental tensor, nevertheless, we obtain some partial results in this direction when the Finsler metric is Berwald.

Harmonic Coordinates for the Nonlinear Finsler Laplacian and Some Regularity Results for Berwald Metrics / Caponio, Erasmo; Masiello, Antonio. - In: AXIOMS. - ISSN 2075-1680. - STAMPA. - 8:3(2019). [10.3390/axioms8030083]

Harmonic Coordinates for the Nonlinear Finsler Laplacian and Some Regularity Results for Berwald Metrics

Caponio, Erasmo;Masiello, Antonio
2019-01-01

Abstract

We prove existence of harmonic coordinates for the nonlinear Laplacian of a Finsler manifold and apply them in a proof of the Myers–Steenrod theorem for Finsler manifolds. Different from the Riemannian case, these coordinates are not suitable for studying optimal regularity of the fundamental tensor, nevertheless, we obtain some partial results in this direction when the Finsler metric is Berwald.
2019
Harmonic Coordinates for the Nonlinear Finsler Laplacian and Some Regularity Results for Berwald Metrics / Caponio, Erasmo; Masiello, Antonio. - In: AXIOMS. - ISSN 2075-1680. - STAMPA. - 8:3(2019). [10.3390/axioms8030083]
File in questo prodotto:
File Dimensione Formato  
Axioms_paper.pdf

accesso aperto

Descrizione: articolo
Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 277.57 kB
Formato Adobe PDF
277.57 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/177275
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact