A quartz-enhanced photoacoustic spectroscopy methane (CH4) sensor with vibrational to translational (V-T) relaxation self-calibration was realized and tested for atmospheric CH4 detection near a landfill. To normalize the influence of H2O vapor on the CH4 energy relaxation rate, CH4 and H2O concentrations were detected simultaneously by means of a frequency division multiplexing technique, in which a custom quartz tuning fork was operated in the fundamental and first overtone combined vibration mode. A continuous wave, thermoelectrically cooled distributed feedback interband cascade laser emitting at 3.3 μm and a near-infrared DFB laser emitting at 1.37 μm were used as the excitation source for CH4 and H2O detection, respectively. A theoretical model of V-T relaxation and self-calibration method were developed to allow this CH4 sensor to have a simple setup and a small sensor size. Continuous field measurements were carried out near the largest sanitary landfill in Shanxi province, China, to demonstrate the stability and ruggedness of the realized CH4 sensor
Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration / Wu, Hongpeng; Dong, Lei; Yin, Xukun; Sampaolo, Angelo; Patimisco, Pietro; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Spagnolo, Vincenzo; Jia, Suotang. - In: SENSORS AND ACTUATORS. B, CHEMICAL. - ISSN 0925-4005. - STAMPA. - 297:(2019). [10.1016/j.snb.2019.126753]
Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration
Sampaolo, Angelo;Patimisco, Pietro;Spagnolo, Vincenzo;
2019-01-01
Abstract
A quartz-enhanced photoacoustic spectroscopy methane (CH4) sensor with vibrational to translational (V-T) relaxation self-calibration was realized and tested for atmospheric CH4 detection near a landfill. To normalize the influence of H2O vapor on the CH4 energy relaxation rate, CH4 and H2O concentrations were detected simultaneously by means of a frequency division multiplexing technique, in which a custom quartz tuning fork was operated in the fundamental and first overtone combined vibration mode. A continuous wave, thermoelectrically cooled distributed feedback interband cascade laser emitting at 3.3 μm and a near-infrared DFB laser emitting at 1.37 μm were used as the excitation source for CH4 and H2O detection, respectively. A theoretical model of V-T relaxation and self-calibration method were developed to allow this CH4 sensor to have a simple setup and a small sensor size. Continuous field measurements were carried out near the largest sanitary landfill in Shanxi province, China, to demonstrate the stability and ruggedness of the realized CH4 sensorFile | Dimensione | Formato | |
---|---|---|---|
SNB-S-19-02576_submitted_2.pdf
accesso aperto
Descrizione: Submitted version
Tipologia:
Documento in Pre-print
Licenza:
Tutti i diritti riservati
Dimensione
1.53 MB
Formato
Adobe PDF
|
1.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.