Electrolytically tunable graphene “building blocks” for reconfigurable and optically transparent microwave surfaces and absorbers have been designed and fabricated by exploiting Deep Eutectic Solvents (DESs). DESs have been first explored as electrolytic and environmentally friendly media for tuning sheet resistance and Fermi level of graphene together with its microwave response (reflection, transmission and absorption). We consider the tunability of the reconfigurable surfaces in terms of transmittance, absorption and reflectance, respectively, over the X and Ku bands when the gate voltage is varied in the −1.4/+1.4 V range. The numerical simulations and experimental measurements also show the ability of the absorber, in the Salisbury screen configuration, to achieve near perfect absorption with a modulation of about 20%. These results could find applications in several technological fields, ranging from electromagnetic pollution to integrated multi-physical regulation systems, thereby helping the advance of the performance of microwave cloaking systems, stealth windows, frequency selective surfaces, modulators and polarizers.
Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene / Grande, Marco; Valerio Bianco, Giuseppe; Maria Perna, Filippo; Capriati, Vito; Capezzuto, Pio; Scalora, Michael; Bruno, Giovanni; D'Orazio, Antonella. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 9:1(2019). [10.1038/s41598-019-41806-w]
Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene
Marco Grande
;Antonella D’Orazio
2019-01-01
Abstract
Electrolytically tunable graphene “building blocks” for reconfigurable and optically transparent microwave surfaces and absorbers have been designed and fabricated by exploiting Deep Eutectic Solvents (DESs). DESs have been first explored as electrolytic and environmentally friendly media for tuning sheet resistance and Fermi level of graphene together with its microwave response (reflection, transmission and absorption). We consider the tunability of the reconfigurable surfaces in terms of transmittance, absorption and reflectance, respectively, over the X and Ku bands when the gate voltage is varied in the −1.4/+1.4 V range. The numerical simulations and experimental measurements also show the ability of the absorber, in the Salisbury screen configuration, to achieve near perfect absorption with a modulation of about 20%. These results could find applications in several technological fields, ranging from electromagnetic pollution to integrated multi-physical regulation systems, thereby helping the advance of the performance of microwave cloaking systems, stealth windows, frequency selective surfaces, modulators and polarizers.File | Dimensione | Formato | |
---|---|---|---|
s41598-019-41806-w.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
1.61 MB
Formato
Adobe PDF
|
1.61 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.