We analyze a model equation arising in option pricing. This model equation takes the form of a nonlinear, nonlocal diffusion equation. We prove the well posedness of the Cauchy problem for this equation. Furthermore, we introduce a semidiscrete difference scheme and show its rate of convergence.

A difference method for the McKean–Vlasov equation / Coclite, Giuseppe Maria; Risebro, Nils Henrik. - In: ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK. - ISSN 0044-2275. - STAMPA. - 70:5(2019). [10.1007/s00033-019-1196-x]

A difference method for the McKean–Vlasov equation

Coclite, Giuseppe Maria
;
2019-01-01

Abstract

We analyze a model equation arising in option pricing. This model equation takes the form of a nonlinear, nonlocal diffusion equation. We prove the well posedness of the Cauchy problem for this equation. Furthermore, we introduce a semidiscrete difference scheme and show its rate of convergence.
2019
A difference method for the McKean–Vlasov equation / Coclite, Giuseppe Maria; Risebro, Nils Henrik. - In: ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK. - ISSN 0044-2275. - STAMPA. - 70:5(2019). [10.1007/s00033-019-1196-x]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/182382
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact