One of the central scientific goals of the next-generation Cherenkov Telescope Array (CTA) is the detection and characterization of gamma-ray bursts (GRBs). CTA will be sensitive to gamma rays with energies from about 20 GeV, up to a few hundred TeV. The energy range below 1 TeV is particularly important for GRBs. CTA will allow exploration of this regime with a ground-based gamma-ray facility with unprecedented sensitivity. As such, it will be able to probe radiation and particle acceleration mechanisms at work in GRBs. In this contribution, we describe POSyTIVE, the POpulation Synthesis Theory Integrated project for very high-energy emission. The purpose of the project is to make realistic predictions for the detection rates of GRBs with CTA, to enable studies of individual simulated GRBs, and to perform preparatory studies for time-resolved spectral analyses. The mock GRB population used by POSyTIVE is calibrated using the entire 40-year dataset of multi-wavelength GRB observations. As part of this project we explore theoretical models for prompt and afterglow emission of long and short GRBs, and predict the expected radiative output. Subsequent analyses are performed in order to simulate the observations with CTA, using the publicly available ctools and Gammapy frameworks. We present preliminary results of the design and implementation of this project.

POSyTIVE - a GRB population study for the Cherenkov Telescope Array / Grazia Bernardini, Maria; Bissaldi, Elisabetta; Bosnjak, Zeljka; Carosi, Alessandro; D'Avanzo, Paolo; Di Girolamo, Tristano; Inoue, Susumu; Gasparetto, Thomas; Ghirlanda, Giancarlo; Longo, Francesco; Melandri, Andrea; Nava, Lara; O'Brien, Paul; Sadeh, Iftach; Schüssler, Fabian; Stolarczyk, Thierry; Vergani, Susanna; Francesco Vigorito, Carlo. - In: POS PROCEEDINGS OF SCIENCE. - ISSN 1824-8039. - ELETTRONICO. - 358:(2019). (Intervento presentato al convegno 36th International Cosmic Ray Conference, ICRC2019 tenutosi a Madison, WI nel July 24 - August 1, 2019).

POSyTIVE - a GRB population study for the Cherenkov Telescope Array

Elisabetta Bissaldi
Membro del Collaboration Group
;
2019-01-01

Abstract

One of the central scientific goals of the next-generation Cherenkov Telescope Array (CTA) is the detection and characterization of gamma-ray bursts (GRBs). CTA will be sensitive to gamma rays with energies from about 20 GeV, up to a few hundred TeV. The energy range below 1 TeV is particularly important for GRBs. CTA will allow exploration of this regime with a ground-based gamma-ray facility with unprecedented sensitivity. As such, it will be able to probe radiation and particle acceleration mechanisms at work in GRBs. In this contribution, we describe POSyTIVE, the POpulation Synthesis Theory Integrated project for very high-energy emission. The purpose of the project is to make realistic predictions for the detection rates of GRBs with CTA, to enable studies of individual simulated GRBs, and to perform preparatory studies for time-resolved spectral analyses. The mock GRB population used by POSyTIVE is calibrated using the entire 40-year dataset of multi-wavelength GRB observations. As part of this project we explore theoretical models for prompt and afterglow emission of long and short GRBs, and predict the expected radiative output. Subsequent analyses are performed in order to simulate the observations with CTA, using the publicly available ctools and Gammapy frameworks. We present preliminary results of the design and implementation of this project.
2019
36th International Cosmic Ray Conference, ICRC2019
https://pos.sissa.it/358/598/
POSyTIVE - a GRB population study for the Cherenkov Telescope Array / Grazia Bernardini, Maria; Bissaldi, Elisabetta; Bosnjak, Zeljka; Carosi, Alessandro; D'Avanzo, Paolo; Di Girolamo, Tristano; Inoue, Susumu; Gasparetto, Thomas; Ghirlanda, Giancarlo; Longo, Francesco; Melandri, Andrea; Nava, Lara; O'Brien, Paul; Sadeh, Iftach; Schüssler, Fabian; Stolarczyk, Thierry; Vergani, Susanna; Francesco Vigorito, Carlo. - In: POS PROCEEDINGS OF SCIENCE. - ISSN 1824-8039. - ELETTRONICO. - 358:(2019). (Intervento presentato al convegno 36th International Cosmic Ray Conference, ICRC2019 tenutosi a Madison, WI nel July 24 - August 1, 2019).
File in questo prodotto:
File Dimensione Formato  
ICRC2019_598.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/184611
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact