Hyperspectral (HS) images captured from Earth by satellite and aircraft have become increasingly important in several environmental and ecological contexts (e.g. agriculture and urban areas). In the present study we propose an iterative learning methodology for the change detection of HS scenes taken at different times in the same areas. It cascades clustering and classification through iterative learning, in order to separate salient regions, where a change occurs in the scene from the unchanged background. The iterative learning is evaluated in both the clustering and the classification steps. The experiments performed with the proposed methodology provide encouraging results, also compared to several recent state-of-the-art competitors.

Detecting Salient Regions in a Bi-temporal Hyperspectral Scene by Iterating Clustering and Classification / Appice, Annalisa; Guccione, Pietro; Acciaro, Emilio; Malerba, Donato. - In: APPLIED INTELLIGENCE. - ISSN 0924-669X. - STAMPA. - 50:10(2020), pp. 3179-3200. [10.1007/s10489-020-01701-8]

Detecting Salient Regions in a Bi-temporal Hyperspectral Scene by Iterating Clustering and Classification

Guccione, Pietro
;
2020-01-01

Abstract

Hyperspectral (HS) images captured from Earth by satellite and aircraft have become increasingly important in several environmental and ecological contexts (e.g. agriculture and urban areas). In the present study we propose an iterative learning methodology for the change detection of HS scenes taken at different times in the same areas. It cascades clustering and classification through iterative learning, in order to separate salient regions, where a change occurs in the scene from the unchanged background. The iterative learning is evaluated in both the clustering and the classification steps. The experiments performed with the proposed methodology provide encouraging results, also compared to several recent state-of-the-art competitors.
2020
Detecting Salient Regions in a Bi-temporal Hyperspectral Scene by Iterating Clustering and Classification / Appice, Annalisa; Guccione, Pietro; Acciaro, Emilio; Malerba, Donato. - In: APPLIED INTELLIGENCE. - ISSN 0924-669X. - STAMPA. - 50:10(2020), pp. 3179-3200. [10.1007/s10489-020-01701-8]
File in questo prodotto:
File Dimensione Formato  
s10489-020-01701-8.pdf

solo gestori catalogo

Tipologia: Versione editoriale
Licenza: Tutti i diritti riservati
Dimensione 5.61 MB
Formato Adobe PDF
5.61 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/194195
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact