Building skins should host multiple functions for increased performance. Addressing this, their design can benefit by learning from nature to achieve multifunctionality, where multifunctional strategies have evolved over years. However, existing frameworks to develop biomimetic adaptive building skins (Bio-ABS) have limited capabilities transferring multifunctionality from nature into designs. This study shows that through investigating the principles of hierarchy and heterogeneity, multifunctionality in nature can be transferred into biomimetic strategies. We aim at mapping the existing knowledge in biological adaptations from the perspective of multifunctionality and developing a framework achieving multifunctionality in Bio-ABS. The framework is demonstrated through the case study of Echinocactus grusonii implemented as a Bio-ABS on a digital base-case building. The methods include the Bio-ABS case study demonstrating the framework and simulating the performance of the case study and base-case building to comparatively analyze the results. The outcomes are a framework to develop multifunctional Bio-ABS and simulation results on the performance improvement Bio-ABS offer. The performance comparison between the Bio-ABS and base-case building show that there is a decrease in the discomfort hours by a maximum of 23.18%. In conclusion, translating heterogeneity and hierarchy principles in nature into engineered designs is a key aspect to achieve multifunctionality in Bio-ABS offering improved strategies in performance over conventional buildings.

A Framework to Achieve Multifunctionality in Biomimetic Adaptive Building Skins / Kuru, Aysu; Oldfield, Philip; Bonser, Stephen; Fiorito, Francesco. - In: BUILDINGS. - ISSN 2075-5309. - ELETTRONICO. - 10:7(2020). [10.3390/buildings10070114]

A Framework to Achieve Multifunctionality in Biomimetic Adaptive Building Skins

Francesco Fiorito
Writing – Original Draft Preparation
2020-01-01

Abstract

Building skins should host multiple functions for increased performance. Addressing this, their design can benefit by learning from nature to achieve multifunctionality, where multifunctional strategies have evolved over years. However, existing frameworks to develop biomimetic adaptive building skins (Bio-ABS) have limited capabilities transferring multifunctionality from nature into designs. This study shows that through investigating the principles of hierarchy and heterogeneity, multifunctionality in nature can be transferred into biomimetic strategies. We aim at mapping the existing knowledge in biological adaptations from the perspective of multifunctionality and developing a framework achieving multifunctionality in Bio-ABS. The framework is demonstrated through the case study of Echinocactus grusonii implemented as a Bio-ABS on a digital base-case building. The methods include the Bio-ABS case study demonstrating the framework and simulating the performance of the case study and base-case building to comparatively analyze the results. The outcomes are a framework to develop multifunctional Bio-ABS and simulation results on the performance improvement Bio-ABS offer. The performance comparison between the Bio-ABS and base-case building show that there is a decrease in the discomfort hours by a maximum of 23.18%. In conclusion, translating heterogeneity and hierarchy principles in nature into engineered designs is a key aspect to achieve multifunctionality in Bio-ABS offering improved strategies in performance over conventional buildings.
2020
A Framework to Achieve Multifunctionality in Biomimetic Adaptive Building Skins / Kuru, Aysu; Oldfield, Philip; Bonser, Stephen; Fiorito, Francesco. - In: BUILDINGS. - ISSN 2075-5309. - ELETTRONICO. - 10:7(2020). [10.3390/buildings10070114]
File in questo prodotto:
File Dimensione Formato  
P68_BIO-ABS_Buildings.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 3.22 MB
Formato Adobe PDF
3.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/198924
Citazioni
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 19
social impact