In this paper we present SPrank, a novel hybrid recommendation algorithm able to compute top-N item recommendations from implicit feedback exploiting the information available in the so called Web of Data. We leverage DBpedia, a well-known knowledge base in the LOD (Linked Open Data) compass, to extract semantic path-based features and to eventually compute recommendations using a learning to rank algorithm. Experiments with datasets on two different domains show that the proposed approach outperforms in terms of prediction accuracy several state-of-the-art top-N recommendation algorithms for implicit feedback in situations affected by different degrees of data sparsity.

Top-N Recommendations from Implicit Feedback Leveraging Linked Open Data

Vito Claudio Ostuni;Tommaso Di Noia;Roberto Mirizzi;Eugenio Di Sciascio
2014

Abstract

In this paper we present SPrank, a novel hybrid recommendation algorithm able to compute top-N item recommendations from implicit feedback exploiting the information available in the so called Web of Data. We leverage DBpedia, a well-known knowledge base in the LOD (Linked Open Data) compass, to extract semantic path-based features and to eventually compute recommendations using a learning to rank algorithm. Experiments with datasets on two different domains show that the proposed approach outperforms in terms of prediction accuracy several state-of-the-art top-N recommendation algorithms for implicit feedback in situations affected by different degrees of data sparsity.
5th Italian Information Retrieval Workshop, IIR 2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11589/20093
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact