We present our results of the temporal and spectral analysis of a sample of 52 bright and hard gamma-ray bursts (GRBs) observed with the Fermi Gamma-ray Burst Monitor (GBM) during its first year of operation (2008 July-2009 July).Our sample was selected from a total of 253 GBM GRBs based on the event peak count rate measured between 0.2 and 40MeV. The final sample comprised of 34 long and 18 short GRBs. These numbers show that the GBM sample contains a much larger fraction of short GRBs than the CGRO/BATSE data set, which we explain as the result of our (different) selection criteria, which favor collection of short, bright GRBs over BATSE. A first by-product of our selection methodology is the determination of a detection threshold from the GBM data alone, above which GRBs most likely will be detected in the MeV/GeV range with the Large Area Telescope on board Fermi. This predictor will be very useful for future multi-wavelength GRB follow-ups with ground- and space-based observatories. Further, we have estimated the burst durations up to 10 MeV and for the first time expanded the duration-energy relationship in the GRB light curves to high energies. We confirm that GRB durations decline with energy as a power law with index approximately -0.4, as was found earlier with the BATSE data and we also notice evidence of a possible cutoff or break at higher energies. Finally, we performed time-integrated spectral analysis of all 52 bursts and compared their spectral parameters with those obtained with the larger data sample of the BATSE data. We find that the two parameter data sets are similar and confirm that short GRBs are in general harder than longer ones. © 2011. The American Astronomical Society. All rights reserved.
First-year results of broadband spectroscopy of the brightest Fermi-GBM gamma-ray bursts / Bissaldi, Elisabetta; Andreas von Kienlin, ; Kouveliotou, Chryssa; Briggs, Michael S.; Connaughton, Valerie; Greiner, Jochen; Gruber, David; Lichti, Giselher; Bhat, P. N.; Burgess, Michael; Chaplin, Vandiver; Diehl, Roland; Fishman, Gerald J.; Fitzpatrick, Gerard; Foley, Suzanne; Gibby, Melissa H.; Giles, Misty M.; Goldstein, Adam; Guiriec, Sylvain; van der Horst, Alexander J.; Marc Kippen, R.; Lin, Jianhui; Mcbreen, Sheila; Meegan, Charles A.; Paciesas, William S.; Preece, Robert D.; Rau, Arne; Tierney, Dave; Wilson-Hodge, Colleen. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 0004-637X. - STAMPA. - 733:2(2011). [10.1088/0004-637X/733/2/97]
First-year results of broadband spectroscopy of the brightest Fermi-GBM gamma-ray bursts
Elisabetta Bissaldi
Writing – Original Draft Preparation
;Lin Lin;
2011-01-01
Abstract
We present our results of the temporal and spectral analysis of a sample of 52 bright and hard gamma-ray bursts (GRBs) observed with the Fermi Gamma-ray Burst Monitor (GBM) during its first year of operation (2008 July-2009 July).Our sample was selected from a total of 253 GBM GRBs based on the event peak count rate measured between 0.2 and 40MeV. The final sample comprised of 34 long and 18 short GRBs. These numbers show that the GBM sample contains a much larger fraction of short GRBs than the CGRO/BATSE data set, which we explain as the result of our (different) selection criteria, which favor collection of short, bright GRBs over BATSE. A first by-product of our selection methodology is the determination of a detection threshold from the GBM data alone, above which GRBs most likely will be detected in the MeV/GeV range with the Large Area Telescope on board Fermi. This predictor will be very useful for future multi-wavelength GRB follow-ups with ground- and space-based observatories. Further, we have estimated the burst durations up to 10 MeV and for the first time expanded the duration-energy relationship in the GRB light curves to high energies. We confirm that GRB durations decline with energy as a power law with index approximately -0.4, as was found earlier with the BATSE data and we also notice evidence of a possible cutoff or break at higher energies. Finally, we performed time-integrated spectral analysis of all 52 bursts and compared their spectral parameters with those obtained with the larger data sample of the BATSE data. We find that the two parameter data sets are similar and confirm that short GRBs are in general harder than longer ones. © 2011. The American Astronomical Society. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
Bissaldi_2011_ApJ_733_97.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Tutti i diritti riservati
Dimensione
754.55 kB
Formato
Adobe PDF
|
754.55 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.