This paper describes the participation of the UNIBA team in the Named Entity rEcognition and Linking (NEEL) Challenge. We propose a completely unsupervised algorithm able to recognize and link named entities in English tweets. The approach combines the simple Lesk algorithm with information coming from both a distributional semantic model and usage frequency of Wikipedia concepts. The results show encouraging performance.

UNIBA: Exploiting a Distributional Semantic Model for Disambiguating and Linking Entities in Tweets / Basile, Pierpaolo; Caputo, Annalina; Semeraro, Giovanni; Narducci, Fedelucio. - ELETTRONICO. - 1395:(2015), pp. 15.62-15.63. (Intervento presentato al convegno 24th International Conference on the World Wide Web, WWW 2015 tenutosi a Firenze, Italy nel May 18-22, 2015).

UNIBA: Exploiting a Distributional Semantic Model for Disambiguating and Linking Entities in Tweets

Fedelucio Narducci
2015-01-01

Abstract

This paper describes the participation of the UNIBA team in the Named Entity rEcognition and Linking (NEEL) Challenge. We propose a completely unsupervised algorithm able to recognize and link named entities in English tweets. The approach combines the simple Lesk algorithm with information coming from both a distributional semantic model and usage frequency of Wikipedia concepts. The results show encouraging performance.
2015
24th International Conference on the World Wide Web, WWW 2015
http://ceur-ws.org/Vol-1395/paper_15.pdf
http://ceur-ws.org/Vol-1395/
UNIBA: Exploiting a Distributional Semantic Model for Disambiguating and Linking Entities in Tweets / Basile, Pierpaolo; Caputo, Annalina; Semeraro, Giovanni; Narducci, Fedelucio. - ELETTRONICO. - 1395:(2015), pp. 15.62-15.63. (Intervento presentato al convegno 24th International Conference on the World Wide Web, WWW 2015 tenutosi a Firenze, Italy nel May 18-22, 2015).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/215925
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact