Recommender systems have shown to be a successful representative of how data availability can ease our everyday digital life. However, data privacy is one of the most prominent concerns in the digital era. After several data breaches and privacy scandals, the users are now worried about sharing their data. In the last decade, Federated Learning has emerged as a new privacy-preserving distributed machine learning paradigm. It works by processing data on the user device without collecting data in a central repository. In this paper, we present FedeRank, a federated recommendation algorithm. The system learns a personal factorization model onto every device. The training of the global model is modeled as a synchronous process between the central server and the federated clients. FedeRank takes care of computing recommendations ina distributed fashion and allows users to control the portion and type of data they want to share. By comparing with state-of-the-art centralized algorithms, extensive experiments show the effectiveness of FedeRank in terms of recommendation accuracy, even with a small portion of shared user data. Further analysis of the recommendation lists’ diversity and novelty guarantees the suitability of the algorithm in real production environments.

FedeRank: User Controlled Feedback with Federated Recommender Systems

Vito Walter Anelli;Yashar Deldjoo;Tommaso Di Noia;Antonio Ferrara;Fedelucio Narducci
2021-01-01

Abstract

Recommender systems have shown to be a successful representative of how data availability can ease our everyday digital life. However, data privacy is one of the most prominent concerns in the digital era. After several data breaches and privacy scandals, the users are now worried about sharing their data. In the last decade, Federated Learning has emerged as a new privacy-preserving distributed machine learning paradigm. It works by processing data on the user device without collecting data in a central repository. In this paper, we present FedeRank, a federated recommendation algorithm. The system learns a personal factorization model onto every device. The training of the global model is modeled as a synchronous process between the central server and the federated clients. FedeRank takes care of computing recommendations ina distributed fashion and allows users to control the portion and type of data they want to share. By comparing with state-of-the-art centralized algorithms, extensive experiments show the effectiveness of FedeRank in terms of recommendation accuracy, even with a small portion of shared user data. Further analysis of the recommendation lists’ diversity and novelty guarantees the suitability of the algorithm in real production environments.
2021
43rd European Conference on IR Research, ECIR 2021
978-3-030-72112-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/216146
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact