Most methods in simulation-optimization assume known environments, whereas this research accounts for uncertain environments combining Taguchi's world view with either regression or Kriging (Gaussian Process) metamodels (response surfaces). These metamodels are combined with Non-Linear Mathematical Programming (NLMP) to find a robust optimal solution. Varying the constraint values in the NLMP model gives an estimated Pareto frontier. To account for the variability of the estimated Pareto frontier, this research uses bootstrapping which gives confidence regions for the robust optimal solution. This methodology is illustrated through the Economic Order Quantity (EOQ) inventory-management model, accounting for the uncertainties in the demand rate and the cost coefficients

Simulation-Optimization under Uncertainty through Metamodeling and Bootstrapping / Dellino, G.; Kleijnen, J. P. C.; Meloni, Carlo. - In: PROCEDIA: SOCIAL & BEHAVIORAL SCIENCES. - ISSN 1877-0428. - 2:6(2010), pp. 7640-7641. (Intervento presentato al convegno 6th International Conference on Sensitivity Analysis of Model Output (SAMO 2010) tenutosi a Milano nel 2010) [10.1016/j.sbspro.2010.05.156].

Simulation-Optimization under Uncertainty through Metamodeling and Bootstrapping

MELONI, Carlo
2010-01-01

Abstract

Most methods in simulation-optimization assume known environments, whereas this research accounts for uncertain environments combining Taguchi's world view with either regression or Kriging (Gaussian Process) metamodels (response surfaces). These metamodels are combined with Non-Linear Mathematical Programming (NLMP) to find a robust optimal solution. Varying the constraint values in the NLMP model gives an estimated Pareto frontier. To account for the variability of the estimated Pareto frontier, this research uses bootstrapping which gives confidence regions for the robust optimal solution. This methodology is illustrated through the Economic Order Quantity (EOQ) inventory-management model, accounting for the uncertainties in the demand rate and the cost coefficients
2010
6th International Conference on Sensitivity Analysis of Model Output (SAMO 2010)
Simulation-Optimization under Uncertainty through Metamodeling and Bootstrapping / Dellino, G.; Kleijnen, J. P. C.; Meloni, Carlo. - In: PROCEDIA: SOCIAL & BEHAVIORAL SCIENCES. - ISSN 1877-0428. - 2:6(2010), pp. 7640-7641. (Intervento presentato al convegno 6th International Conference on Sensitivity Analysis of Model Output (SAMO 2010) tenutosi a Milano nel 2010) [10.1016/j.sbspro.2010.05.156].
File in questo prodotto:
File Dimensione Formato  
PROCEDIA.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 201.95 kB
Formato Adobe PDF
201.95 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/21636
Citazioni
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact