In this paper, a method to estimate the position and the entity of capacitive faults in coaxial cables based on the time domain reflectometry (TDR) is presented. A convolutional neural network (CNN) is used to analyze the reflectometric signals obtained from transmission lines containing multiple capacitive faults. The great quantity of data necessary for training the neural network was generated using a transmission line simulator. After the training procedure, the CNN was tested on both simulated and measured signals. The testing results prove that the neural network is capable to produce good estimates of the line characteristics, even when working with complex reflectometric signals.

Analysis of TDR Signals with Convolutional Neural Networks

Marco Scarpetta;Maurizio Spadavecchia;Gregorio Andria;Mattia Alessandro Ragolia;Nicola Giaquinto
2021-01-01

Abstract

In this paper, a method to estimate the position and the entity of capacitive faults in coaxial cables based on the time domain reflectometry (TDR) is presented. A convolutional neural network (CNN) is used to analyze the reflectometric signals obtained from transmission lines containing multiple capacitive faults. The great quantity of data necessary for training the neural network was generated using a transmission line simulator. After the training procedure, the CNN was tested on both simulated and measured signals. The testing results prove that the neural network is capable to produce good estimates of the line characteristics, even when working with complex reflectometric signals.
2021
IEEE International Instrumentation and Measurement Technology Conference, I2MTC 2021
978-1-7281-9539-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/225059
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact