Mid-infrared spectral “fingerprints” of many hazardous and harmful gaseous substances are characterized by broad absorption bands, resulting from the merging of several absorption lines corresponding to ro-vibrational transitions. Broadband absorption spectroscopy is fundamental to detect and discriminate these substances. Here we report on a quartz-enhanced photoacoustic spectroscopy sensor for broadband absorbers detection, employing a monolithic array of 32, individually addressable, distributed-feedback quantum cascade lasers as the excitation source. This light source combines a fast tuning speed with a large tuning range, from 1190 cm−1 to 1340 cm−1 together with a high stability. The QEPAS sensor was tested for nitrous oxide (N2O) and methane (CH4) detection, exhibiting absorption features in the laser source emission spectral range. The two broad P- and R- absorption branches of N2O have been accurately reconstructed, as well as several absorption features of CH4, for gas concentrations ranging from 200 to 1000 part-per-million in nitrogen.

Broadband Gas QEPAS Detection Exploiting a Monolithic DFB-QCL Array

Marilena Giglio
;
Pietro Patimisco;Angelo Sampaolo;Giansergio Menduni;Vincenzo Spagnolo
2021-01-01

Abstract

Mid-infrared spectral “fingerprints” of many hazardous and harmful gaseous substances are characterized by broad absorption bands, resulting from the merging of several absorption lines corresponding to ro-vibrational transitions. Broadband absorption spectroscopy is fundamental to detect and discriminate these substances. Here we report on a quartz-enhanced photoacoustic spectroscopy sensor for broadband absorbers detection, employing a monolithic array of 32, individually addressable, distributed-feedback quantum cascade lasers as the excitation source. This light source combines a fast tuning speed with a large tuning range, from 1190 cm−1 to 1340 cm−1 together with a high stability. The QEPAS sensor was tested for nitrous oxide (N2O) and methane (CH4) detection, exhibiting absorption features in the laser source emission spectral range. The two broad P- and R- absorption branches of N2O have been accurately reconstructed, as well as several absorption features of CH4, for gas concentrations ranging from 200 to 1000 part-per-million in nitrogen.
2021
Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures Against Explosives and CBRN
978-94-024-2081-4
Springer Nature
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/226403
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact