Following the recent survey on Buchberger-Zacharias Theory for monoid rings R[S] over a unitary effective ring R and an effective monoid S, we propose here a presentation of Buchberger Zacharias Theory and related Grobner basis computation algorithms for multivariate Ore extensions of rings presented as modules over a principal ideal domain, using Moller-Pritchard lifting theorem.
Buchberger-Zacharias Theory of multivariate Ore extensions / Ceria, Michela; Mora, Teo. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - 221:12(2017), pp. 2974-3026. [10.1016/j.jpaa.2017.02.011]
Buchberger-Zacharias Theory of multivariate Ore extensions
Ceria Michela;
2017-01-01
Abstract
Following the recent survey on Buchberger-Zacharias Theory for monoid rings R[S] over a unitary effective ring R and an effective monoid S, we propose here a presentation of Buchberger Zacharias Theory and related Grobner basis computation algorithms for multivariate Ore extensions of rings presented as modules over a principal ideal domain, using Moller-Pritchard lifting theorem.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.