This paper presents a brief history of the hydraulic jump and a literature review on hydraulic jumps’ experimental and numerical studies. Leonardo da Vinci noticed this phenomenon early on, but it was only later studied by Bidone in 1820. Since the beginning of the 20th century, the hydraulic jump has received a lot of attention following the development of energy dissipater designs and stilling basins. The late 1920s and early 1930s saw many experimental studies researching the surface roller profile and energy dissipation. The study of internal flow features started in the late 1950s. Starting in the 70s, it was believed that the flow of a jump must be analyzed in its actual configuration of air–water mixture, an aspect that cannot be overlooked. Several experimental studies in the late 1980s and 1990s highlighted the existence of oscillating phenomena under specific flow conditions and particularly, a cyclic variation of jump types over long-lasting experiments. The early 2000s saw many experimental studies researching the complex structure of the separated region in very large channels downstream of the lateral shockwaves. Whereas most of the experiments provide measurements at a point or on a plane, the complete flow field supplied by CFD simulations enables us to have a deeper understanding of the dynamics of coherent structures that are responsible for free-surface fluctuations and aeration in hydraulic jumps. Therefore, in recent years, the computational fluid dynamics (CFD) method, through turbulence models, has become a useful tool to study this complex environmental fluid mechanic problem.

Hydraulic Jump: A Brief History and Research Challenges

De Padova, Diana;Mossa, Michele
2021-01-01

Abstract

This paper presents a brief history of the hydraulic jump and a literature review on hydraulic jumps’ experimental and numerical studies. Leonardo da Vinci noticed this phenomenon early on, but it was only later studied by Bidone in 1820. Since the beginning of the 20th century, the hydraulic jump has received a lot of attention following the development of energy dissipater designs and stilling basins. The late 1920s and early 1930s saw many experimental studies researching the surface roller profile and energy dissipation. The study of internal flow features started in the late 1950s. Starting in the 70s, it was believed that the flow of a jump must be analyzed in its actual configuration of air–water mixture, an aspect that cannot be overlooked. Several experimental studies in the late 1980s and 1990s highlighted the existence of oscillating phenomena under specific flow conditions and particularly, a cyclic variation of jump types over long-lasting experiments. The early 2000s saw many experimental studies researching the complex structure of the separated region in very large channels downstream of the lateral shockwaves. Whereas most of the experiments provide measurements at a point or on a plane, the complete flow field supplied by CFD simulations enables us to have a deeper understanding of the dynamics of coherent structures that are responsible for free-surface fluctuations and aeration in hydraulic jumps. Therefore, in recent years, the computational fluid dynamics (CFD) method, through turbulence models, has become a useful tool to study this complex environmental fluid mechanic problem.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/227018
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact