Long waves caused by storm surges or river floods can significantly impact marine and fluvial structures such as bridge piers. Apart from the forces that they generate on the structure, they also contribute to the formation of turbulent eddies downstream of the obstacle. This is relevant, as in this way they can affect both an erodible bottom and the ecosystem. The present study describes a medium-scale experiment, in which the propagation of two different long waves released on a steady current is investigated in the presence of a bottom-mounted rigid emergent cylinder. Velocity measurements were acquired by a Particle Image Velocimetry (PIV) system, providing instantaneous flow velocity vectors on selected 2D planes. For each experimental condition, the time-varying velocity field near the cylinder was examined in selected vertical and horizontal planes. First, we tested which analytical theory or approximated method can best represent the experimental waves. After this, we estimated the horizontal maps of velocity and vorticity downstream of the obstacle and finally processed the velocity signals by means of a wavelet-based technique, to derive the length scales of turbulent eddies. In such a way, we specifically derived how the spreading of coherent turbulent structures downstream of the cylinder depends on the features of the flume, cylinder, and wave.

Flow Field around a Vertical Cylinder in Presence of Long Waves: An Experimental Study

francesca de serio
Project Administration
;
rosangela basile
2022

Abstract

Long waves caused by storm surges or river floods can significantly impact marine and fluvial structures such as bridge piers. Apart from the forces that they generate on the structure, they also contribute to the formation of turbulent eddies downstream of the obstacle. This is relevant, as in this way they can affect both an erodible bottom and the ecosystem. The present study describes a medium-scale experiment, in which the propagation of two different long waves released on a steady current is investigated in the presence of a bottom-mounted rigid emergent cylinder. Velocity measurements were acquired by a Particle Image Velocimetry (PIV) system, providing instantaneous flow velocity vectors on selected 2D planes. For each experimental condition, the time-varying velocity field near the cylinder was examined in selected vertical and horizontal planes. First, we tested which analytical theory or approximated method can best represent the experimental waves. After this, we estimated the horizontal maps of velocity and vorticity downstream of the obstacle and finally processed the velocity signals by means of a wavelet-based technique, to derive the length scales of turbulent eddies. In such a way, we specifically derived how the spreading of coherent turbulent structures downstream of the cylinder depends on the features of the flume, cylinder, and wave.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11589/240642
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact