We prove a multiplicity result for {-epsilon(2) Delta(g)u + omega u + q(2) phi u = vertical bar u vertical bar(p-2) u in M, -Delta(g)phi + a(2)Delta(2)(g)phi + m(2)phi = 4 pi u(2) where (M, g) is a smooth and compact 3-dimensional Riemannian manifold without boundary, p is an element of (4, 6), a, m, q not equal 0, epsilon > 0 small enough. The proof of this result relies on Lusternik-Schnirellman category. We also provide a profile description for low energy solutions.

Multiple solutions and profile description for a nonlinear Schrödinger–Bopp–Podolsky–Proca system on a manifold / D'Avenia, Pietro; Ghimenti, Marco G.. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - STAMPA. - 61:6(2022). [10.1007/s00526-022-02341-1]

Multiple solutions and profile description for a nonlinear Schrödinger–Bopp–Podolsky–Proca system on a manifold

Pietro d'Avenia
;
2022-01-01

Abstract

We prove a multiplicity result for {-epsilon(2) Delta(g)u + omega u + q(2) phi u = vertical bar u vertical bar(p-2) u in M, -Delta(g)phi + a(2)Delta(2)(g)phi + m(2)phi = 4 pi u(2) where (M, g) is a smooth and compact 3-dimensional Riemannian manifold without boundary, p is an element of (4, 6), a, m, q not equal 0, epsilon > 0 small enough. The proof of this result relies on Lusternik-Schnirellman category. We also provide a profile description for low energy solutions.
2022
Multiple solutions and profile description for a nonlinear Schrödinger–Bopp–Podolsky–Proca system on a manifold / D'Avenia, Pietro; Ghimenti, Marco G.. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - STAMPA. - 61:6(2022). [10.1007/s00526-022-02341-1]
File in questo prodotto:
File Dimensione Formato  
2022_Multiple_solutions_and_profile_description_for_a_nonlinear_Schrödinger–Bopp–Podolsky–Proca_system_on_a_manifold_pdfeditoriale.pdf

Solo utenti POLIBA

Tipologia: Versione editoriale
Licenza: Tutti i diritti riservati
Dimensione 488.71 kB
Formato Adobe PDF
488.71 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/241560
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact