We prove a multiplicity result for {-epsilon(2) Delta(g)u + omega u + q(2) phi u = vertical bar u vertical bar(p-2) u in M, -Delta(g)phi + a(2)Delta(2)(g)phi + m(2)phi = 4 pi u(2) where (M, g) is a smooth and compact 3-dimensional Riemannian manifold without boundary, p is an element of (4, 6), a, m, q not equal 0, epsilon > 0 small enough. The proof of this result relies on Lusternik-Schnirellman category. We also provide a profile description for low energy solutions.
Multiple solutions and profile description for a nonlinear Schrödinger–Bopp–Podolsky–Proca system on a manifold / D'Avenia, Pietro; Ghimenti, Marco G.. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - STAMPA. - 61:6(2022). [10.1007/s00526-022-02341-1]
Multiple solutions and profile description for a nonlinear Schrödinger–Bopp–Podolsky–Proca system on a manifold
Pietro d'Avenia
;
2022-01-01
Abstract
We prove a multiplicity result for {-epsilon(2) Delta(g)u + omega u + q(2) phi u = vertical bar u vertical bar(p-2) u in M, -Delta(g)phi + a(2)Delta(2)(g)phi + m(2)phi = 4 pi u(2) where (M, g) is a smooth and compact 3-dimensional Riemannian manifold without boundary, p is an element of (4, 6), a, m, q not equal 0, epsilon > 0 small enough. The proof of this result relies on Lusternik-Schnirellman category. We also provide a profile description for low energy solutions.File | Dimensione | Formato | |
---|---|---|---|
2022_Multiple_solutions_and_profile_description_for_a_nonlinear_Schrödinger–Bopp–Podolsky–Proca_system_on_a_manifold_pdfeditoriale.pdf
Solo utenti POLIBA
Tipologia:
Versione editoriale
Licenza:
Tutti i diritti riservati
Dimensione
488.71 kB
Formato
Adobe PDF
|
488.71 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.