The friction stir lap welding of AA5083 H111 aluminum alloy and S355J2 grade DH36 structural steel was investigated. A polycrystalline cubic boron nitride with tungsten and rhenium additives tool was used. According to visual inspection, radiographic examination, and tensile test, it was observed that the best results were obtained for rotation speeds of about 700-800 rpm, with a feed speed ranging between 1.3 and 1.9 mm/s. From the fatigue tests, it is possible to state that there was a preferential propagation of cracks in the part of the aluminum alloy base material. Furthermore, a different response to fatigue stress for samples extracted from the same weld at different positions was observed, which introduces an overall variability in weld behavior along the welding direction. The specimens obtained in the second part of the weld endured a larger number of cycles before reaching failure, which can be related to progressively varying thermal conditions, dissipation behavior, and better metal coupling as the tool travels along the welding line.

Experimental investigation of material properties in FSW dissimilar aluminum-steel lap joints

Mortello M.
;
Contuzzi N.;Casalino G.
2021

Abstract

The friction stir lap welding of AA5083 H111 aluminum alloy and S355J2 grade DH36 structural steel was investigated. A polycrystalline cubic boron nitride with tungsten and rhenium additives tool was used. According to visual inspection, radiographic examination, and tensile test, it was observed that the best results were obtained for rotation speeds of about 700-800 rpm, with a feed speed ranging between 1.3 and 1.9 mm/s. From the fatigue tests, it is possible to state that there was a preferential propagation of cracks in the part of the aluminum alloy base material. Furthermore, a different response to fatigue stress for samples extracted from the same weld at different positions was observed, which introduces an overall variability in weld behavior along the welding direction. The specimens obtained in the second part of the weld endured a larger number of cycles before reaching failure, which can be related to progressively varying thermal conditions, dissipation behavior, and better metal coupling as the tool travels along the welding line.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11589/243121
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact