Collaborative filtering recommender systems (CF-RSs) employ user-item feedback, e.g., ratings, purchases, or reviews, to harmonize similarities among customers and produce personalized lists of products. Being based on the benevolence of other customers, CF-RSs are vulnerable to Shilling Attacks, i.e., fake profiles injected on the platform by adversaries to hack the recommendation outcomes toward a corrupt behavior. While mainly works on shilling attacks have been conducted to propose novel methods, compare recommendation models and outputs with and without defenses, we have found a lack of study on the impact of dataset properties on the CF-RSs robustness. In this work, we present a regression model to test whether dataset characteristics can impact the robustness of CF-RSs under shilling attacks to interpret their efficacy depending on these characteristics. Obtained results can help the system designer understand the cause of CF-RSs performance variations in attack scenarios.
A regression framework to interpret the robustness of recommender systems against shilling attacks / Deldjoo, Y.; Di Noia, T.; Di Sciascio, E.; Merra, F. A.. - 2947:(2021). (Intervento presentato al convegno 11th Italian Information Retrieval Workshop, IIR 2021 tenutosi a Department of Electrical and Information Engineering of Politecnico di Bari, ita nel 2021).
A regression framework to interpret the robustness of recommender systems against shilling attacks
Deldjoo Y.;Di Noia T.;Di Sciascio E.;Merra F. A.
2021-01-01
Abstract
Collaborative filtering recommender systems (CF-RSs) employ user-item feedback, e.g., ratings, purchases, or reviews, to harmonize similarities among customers and produce personalized lists of products. Being based on the benevolence of other customers, CF-RSs are vulnerable to Shilling Attacks, i.e., fake profiles injected on the platform by adversaries to hack the recommendation outcomes toward a corrupt behavior. While mainly works on shilling attacks have been conducted to propose novel methods, compare recommendation models and outputs with and without defenses, we have found a lack of study on the impact of dataset properties on the CF-RSs robustness. In this work, we present a regression model to test whether dataset characteristics can impact the robustness of CF-RSs under shilling attacks to interpret their efficacy depending on these characteristics. Obtained results can help the system designer understand the cause of CF-RSs performance variations in attack scenarios.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.