In this note, we extend the known results on the existence and uniqueness of weak solutions to conservation laws with nonlocal flux. In case the nonlocal term is given by a convolution γ ∗ q, we weaken the standard assumption on the kernel γ ∈ L∞􏰀(0, T ); W 1,∞(R)􏰁 to the substantially more general condition γ ∈ L∞((0, T ); BV (R)), which allows for discontinuities in the kernel.

On existence and uniqueness of weak solutions to nonlocal conservation laws with BV kernels

Coclite, Giuseppe Maria;
2022-01-01

Abstract

In this note, we extend the known results on the existence and uniqueness of weak solutions to conservation laws with nonlocal flux. In case the nonlocal term is given by a convolution γ ∗ q, we weaken the standard assumption on the kernel γ ∈ L∞􏰀(0, T ); W 1,∞(R)􏰁 to the substantially more general condition γ ∈ L∞((0, T ); BV (R)), which allows for discontinuities in the kernel.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/244200
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact