In this paper we give a multiplicity result for the following Chern-Simons-Schrodinger equation -Delta u + 2qu integral(infinity)(vertical bar x vertical bar) u(2) (s)/s h(u)(s) ds + qu h(u)(2)(vertical bar x vertical bar)/vertical bar x vertical bar(2) = g(u), in R-2, where h(u)(s) = integral(s)(0) tu(2)(tau) d tau, under very general assumptions on the nonlinearity g. In particular, for every n is an element of N, we prove the existence of (at least) n distinct solutions, for every q is an element of(0, q(n)), for a suitable q(n).
A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity / Leal da Cunha, Patricia; D'Avenia, Pietro; Pomponio, Alessio; Siciliano, Gaetano. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - STAMPA. - 22:6(2015), pp. 1831-1850. [10.1007/s00030-015-0346-x]
A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity
d'Avenia, Pietro;Pomponio, Alessio;
2015-01-01
Abstract
In this paper we give a multiplicity result for the following Chern-Simons-Schrodinger equation -Delta u + 2qu integral(infinity)(vertical bar x vertical bar) u(2) (s)/s h(u)(s) ds + qu h(u)(2)(vertical bar x vertical bar)/vertical bar x vertical bar(2) = g(u), in R-2, where h(u)(s) = integral(s)(0) tu(2)(tau) d tau, under very general assumptions on the nonlinearity g. In particular, for every n is an element of N, we prove the existence of (at least) n distinct solutions, for every q is an element of(0, q(n)), for a suitable q(n).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.