Linear error-correcting codes can be used for constructing secret sharing schemes; however, finding in general the access structures of these secret sharing schemes and, in particular, determining efficient access structures is difficult. Here we investigate the properties of certain algebraic hypersurfaces over finite fields, whose intersection numbers with any hyperplane only takes a few values; these varieties give rise to q-divisible linear codes with at most 5 weights. Furthermore, for q odd, these codes turn out to be minimal and we characterize the access structures of the secret sharing schemes based on their dual codes. Indeed, the secret sharing schemes thus obtained are democratic, that is each participant belongs to the same number of minimal access sets and can easily be described.
Some hypersurfaces over finite fields, minimal codes and secret sharing schemes / Aguglia, Angela; Ceria, Michela; Giuzzi, Luca. - In: DESIGNS, CODES AND CRYPTOGRAPHY. - ISSN 0925-1022. - STAMPA. - 90:6(2022), pp. 1503-1519. [10.1007/s10623-022-01051-1]
Some hypersurfaces over finite fields, minimal codes and secret sharing schemes
Angela Aguglia;Michela Ceria;
2022-01-01
Abstract
Linear error-correcting codes can be used for constructing secret sharing schemes; however, finding in general the access structures of these secret sharing schemes and, in particular, determining efficient access structures is difficult. Here we investigate the properties of certain algebraic hypersurfaces over finite fields, whose intersection numbers with any hyperplane only takes a few values; these varieties give rise to q-divisible linear codes with at most 5 weights. Furthermore, for q odd, these codes turn out to be minimal and we characterize the access structures of the secret sharing schemes based on their dual codes. Indeed, the secret sharing schemes thus obtained are democratic, that is each participant belongs to the same number of minimal access sets and can easily be described.File | Dimensione | Formato | |
---|---|---|---|
2022_Some hypersurfaces over finite fields_pdfeditoriale.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
320.16 kB
Formato
Adobe PDF
|
320.16 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.