In this paper we provide constructive lower bounds on the sizes of the largest partial ovoids of the symplectic polar spaces W ( 3 , q ) ${\mathscr{W}}(3,q)$, q $q$ odd square, q not equivalent to 0 ( mod 3 ) $q\not\equiv 0(\mathrm{mod}3)$, W ( 5 , q ) ${\mathscr{W}}(5,q)$ and of the Hermitian polar spaces Script capital H ( 4 , q 2 ) ${\rm{ {\mathcal H} }}(4,{q}<^>{2})$, q $q$ even or q $q$ odd square, q not equivalent to 0 ( mod 3 ) $q\not\equiv 0(\mathrm{mod}3)$, Script capital H ( 6 , q 2 ) ${\rm{ {\mathcal H} }}(6,{q}<^>{2})$, Script capital H ( 8 , q 2 ) ${\rm{ {\mathcal H} }}(8,{q}<^>{2})$.

On large partial ovoids of symplectic and Hermitian polar spaces

Ceria, M;Pavese, F;
2023-01-01

Abstract

In this paper we provide constructive lower bounds on the sizes of the largest partial ovoids of the symplectic polar spaces W ( 3 , q ) ${\mathscr{W}}(3,q)$, q $q$ odd square, q not equivalent to 0 ( mod 3 ) $q\not\equiv 0(\mathrm{mod}3)$, W ( 5 , q ) ${\mathscr{W}}(5,q)$ and of the Hermitian polar spaces Script capital H ( 4 , q 2 ) ${\rm{ {\mathcal H} }}(4,{q}<^>{2})$, q $q$ even or q $q$ odd square, q not equivalent to 0 ( mod 3 ) $q\not\equiv 0(\mathrm{mod}3)$, Script capital H ( 6 , q 2 ) ${\rm{ {\mathcal H} }}(6,{q}<^>{2})$, Script capital H ( 8 , q 2 ) ${\rm{ {\mathcal H} }}(8,{q}<^>{2})$.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/245382
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact