This paper introduces the Human Action Multi-Modal Monitoring in Manufacturing (HA4M) dataset, a collection of multi-modal data relative to actions performed by different subjects building an Epicyclic Gear Train (EGT). In particular, 41 subjects executed several trials of the assembly task, which consists of 12 actions. Data were collected in a laboratory scenario using a Microsoft® Azure Kinect which integrates a depth camera, an RGB camera, and InfraRed (IR) emitters. To the best of authors’ knowledge, the HA4M dataset is the first multi-modal dataset about an assembly task containing six types of data: RGB images, Depth maps, IR images, RGB-to-Depth-Aligned images, Point Clouds and Skeleton data. These data represent a good foundation to develop and test advanced action recognition systems in several fields, including Computer Vision and Machine Learning, and application domains such as smart manufacturing and human-robot collaboration.

The HA4M dataset: Multi-Modal Monitoring of an assembly task for Human Action recognition in Manufacturing / Cicirelli, Grazia; Marani, Roberto; Romeo, Laura; García Domínguez, Manuel; Heras, Jónathan; Perri, Anna Gina; D’Orazio, Tiziana. - In: SCIENTIFIC DATA. - ISSN 2052-4463. - ELETTRONICO. - 9:(2022). [10.1038/s41597-022-01843-z]

The HA4M dataset: Multi-Modal Monitoring of an assembly task for Human Action recognition in Manufacturing

Roberto Marani
Software
;
Laura Romeo
Validation
;
Anna Gina Perri
Conceptualization
;
2022-01-01

Abstract

This paper introduces the Human Action Multi-Modal Monitoring in Manufacturing (HA4M) dataset, a collection of multi-modal data relative to actions performed by different subjects building an Epicyclic Gear Train (EGT). In particular, 41 subjects executed several trials of the assembly task, which consists of 12 actions. Data were collected in a laboratory scenario using a Microsoft® Azure Kinect which integrates a depth camera, an RGB camera, and InfraRed (IR) emitters. To the best of authors’ knowledge, the HA4M dataset is the first multi-modal dataset about an assembly task containing six types of data: RGB images, Depth maps, IR images, RGB-to-Depth-Aligned images, Point Clouds and Skeleton data. These data represent a good foundation to develop and test advanced action recognition systems in several fields, including Computer Vision and Machine Learning, and application domains such as smart manufacturing and human-robot collaboration.
2022
https://doi.org/10.1038/s41597-022-01843-z
The HA4M dataset: Multi-Modal Monitoring of an assembly task for Human Action recognition in Manufacturing / Cicirelli, Grazia; Marani, Roberto; Romeo, Laura; García Domínguez, Manuel; Heras, Jónathan; Perri, Anna Gina; D’Orazio, Tiziana. - In: SCIENTIFIC DATA. - ISSN 2052-4463. - ELETTRONICO. - 9:(2022). [10.1038/s41597-022-01843-z]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/245500
Citazioni
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 14
social impact