Kuramoto–Velarde equation describes the spatiotemporal evo- lution of the morphology of steps on crystal surfaces, or the evolution of the spinoidal decomposition of phase separating systems in an exter- nal field. We prove the well-posedness of the classical solutions for the Cauchy problem, associated with this equation for each choice of the terminal time T.

$$H^1$$ Solutions for a Kuramoto–Velarde Type Equation / Coclite, Giuseppe Maria; di Ruvo, Lorenzo. - In: MEDITERRANEAN JOURNAL OF MATHEMATICS. - ISSN 1660-5446. - 20:3(2023), pp. 110-135. [10.1007/s00009-023-02295-4]

$$H^1$$ Solutions for a Kuramoto–Velarde Type Equation

Coclite, Giuseppe Maria
;
2023-01-01

Abstract

Kuramoto–Velarde equation describes the spatiotemporal evo- lution of the morphology of steps on crystal surfaces, or the evolution of the spinoidal decomposition of phase separating systems in an exter- nal field. We prove the well-posedness of the classical solutions for the Cauchy problem, associated with this equation for each choice of the terminal time T.
2023
https://doi.org/10.1007/s00009-023-02295-4
$$H^1$$ Solutions for a Kuramoto–Velarde Type Equation / Coclite, Giuseppe Maria; di Ruvo, Lorenzo. - In: MEDITERRANEAN JOURNAL OF MATHEMATICS. - ISSN 1660-5446. - 20:3(2023), pp. 110-135. [10.1007/s00009-023-02295-4]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/247880
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact