We study the discrete-to-continuum variational limit of the antiferromagnetic XY model on the two-dimensional triangular lattice in the vortex regime. Within this regime, the spin system cannot overcome the energetic barrier of chirality transitions, hence one of the two chirality phases is prevalent. We find the order parameter that describes the vortex structure of the spin field in the majority chirality phase and we compute explicitly the Γ-limit of the scaled energy, showing that it concentrates on finitely many vortex-like singularities of the spin field.

The Antiferromagnetic XY Model on the Triangular Lattice: Topological Singularities / Bach, A.; Cicalese, M.; Kreutz, L.; Orlando, G.. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - 71:6(2022), pp. 2411-2475. [10.1512/iumj.2022.71.9239]

The Antiferromagnetic XY Model on the Triangular Lattice: Topological Singularities

Orlando G.
2022-01-01

Abstract

We study the discrete-to-continuum variational limit of the antiferromagnetic XY model on the two-dimensional triangular lattice in the vortex regime. Within this regime, the spin system cannot overcome the energetic barrier of chirality transitions, hence one of the two chirality phases is prevalent. We find the order parameter that describes the vortex structure of the spin field in the majority chirality phase and we compute explicitly the Γ-limit of the scaled energy, showing that it concentrates on finitely many vortex-like singularities of the spin field.
2022
The Antiferromagnetic XY Model on the Triangular Lattice: Topological Singularities / Bach, A.; Cicalese, M.; Kreutz, L.; Orlando, G.. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - 71:6(2022), pp. 2411-2475. [10.1512/iumj.2022.71.9239]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/250640
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact