The corrosion resistance behaviour of recycled AlSi10Mg alloy prepared using Selective Laser Melting (SLM) process is investigated. The specimens are exposed to salt solution attack (5% NaCl) atomized in uniform droplets, inside a controlled Salt Spray Test (SST) chamber for 1000 h. The surface morphology of the specimens exposed to different predefined exposure times (0 h, 6 h, 48 h, 168 h, 480 h and 1000 h) are investigated under Scanning Electron Microscope (SEM). The SEM micrographs shows the salient features of the corrosion attack such as the formation both of pits and corrosion products on samples surface in different exposure times in the SST chamber. Similarly, the Acoustic Emission (AE) signals generated during the corrosion process are recorded for the different exposure times. The AE waveforms are studied using advanced waveform processing techniques. The waveforms, in their time-frequency domain, provide detailed information on the characteristic features of the acoustic source. The different AE sources have been characterized from the time-frequency analysis of the waveforms.

Corrosion Resistance Behaviour of recycled AlSi10Mg alloy: Surface Morphology and Acoustic Emission Investigation

Claudia Barile
;
Caterina Casavola;Vimalathithan Paramsamy Kannan;Gilda Renna
2022-01-01

Abstract

The corrosion resistance behaviour of recycled AlSi10Mg alloy prepared using Selective Laser Melting (SLM) process is investigated. The specimens are exposed to salt solution attack (5% NaCl) atomized in uniform droplets, inside a controlled Salt Spray Test (SST) chamber for 1000 h. The surface morphology of the specimens exposed to different predefined exposure times (0 h, 6 h, 48 h, 168 h, 480 h and 1000 h) are investigated under Scanning Electron Microscope (SEM). The SEM micrographs shows the salient features of the corrosion attack such as the formation both of pits and corrosion products on samples surface in different exposure times in the SST chamber. Similarly, the Acoustic Emission (AE) signals generated during the corrosion process are recorded for the different exposure times. The AE waveforms are studied using advanced waveform processing techniques. The waveforms, in their time-frequency domain, provide detailed information on the characteristic features of the acoustic source. The different AE sources have been characterized from the time-frequency analysis of the waveforms.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/252248
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact