Current research extensively relies on two-dimensional (2D) modelling to predict the seismic behaviour of tunnels. However, seismic wave propagation can occur in arbitrary direction with respect to the axis of the structure, leading to multi-directional loading of the soil deposit and the tunnel lining. Using 2D simplifications to represent these three-dimensional (3D) effects can significantly impact the prediction of the tunnel's seismic response. Furthermore, most natural soils typically exhibit high stiffness and peak strength due to their initial structure. During strong earthquakes, such soils may experience significant stiffness degradation which may alter the response of the soil-tunnel system. This behaviour cannot be captured by simple elasto-plastic constitutive models, requiring the need to use advanced constitutive laws which incorporate soil initial structure degradation during dynamic loading. This paper presents novel results from advanced 3D numerical simulations of shallow circular tunnels in natural clays subjected to multi-directional seismic motions while considering soil structure degradation. Notably, the results indicate that soil destructuration facilitates the transmission of higher longitudinal loads in the lining while reducing the transverse forces. Therefore, the work highlights the significance of soil destructuration in accurately predicting the magnitude of tunnel lining forces under arbitrarily-directed seismic loading.

The effect of multi-directional seismic loading on the behaviour of tunnels in structured clays / Cabangon, Lowell Tan; Elia, Gaetano; Rouainia, Mohamed; Keawsawasvong, Suraparb. - In: COMPUTERS AND GEOTECHNICS. - ISSN 0266-352X. - STAMPA. - 160:(2023). [10.1016/j.compgeo.2023.105531]

The effect of multi-directional seismic loading on the behaviour of tunnels in structured clays

Elia, Gaetano;
2023

Abstract

Current research extensively relies on two-dimensional (2D) modelling to predict the seismic behaviour of tunnels. However, seismic wave propagation can occur in arbitrary direction with respect to the axis of the structure, leading to multi-directional loading of the soil deposit and the tunnel lining. Using 2D simplifications to represent these three-dimensional (3D) effects can significantly impact the prediction of the tunnel's seismic response. Furthermore, most natural soils typically exhibit high stiffness and peak strength due to their initial structure. During strong earthquakes, such soils may experience significant stiffness degradation which may alter the response of the soil-tunnel system. This behaviour cannot be captured by simple elasto-plastic constitutive models, requiring the need to use advanced constitutive laws which incorporate soil initial structure degradation during dynamic loading. This paper presents novel results from advanced 3D numerical simulations of shallow circular tunnels in natural clays subjected to multi-directional seismic motions while considering soil structure degradation. Notably, the results indicate that soil destructuration facilitates the transmission of higher longitudinal loads in the lining while reducing the transverse forces. Therefore, the work highlights the significance of soil destructuration in accurately predicting the magnitude of tunnel lining forces under arbitrarily-directed seismic loading.
2023
The effect of multi-directional seismic loading on the behaviour of tunnels in structured clays / Cabangon, Lowell Tan; Elia, Gaetano; Rouainia, Mohamed; Keawsawasvong, Suraparb. - In: COMPUTERS AND GEOTECHNICS. - ISSN 0266-352X. - STAMPA. - 160:(2023). [10.1016/j.compgeo.2023.105531]
File in questo prodotto:
File Dimensione Formato  
2023_The_effect_of_multi-directional_seismic_loading_on_the_behaviour_of_tunnels_in_structured_clays_pdfeditoriale.pdf

Solo utenti POLIBA

Descrizione: COGE 2023
Tipologia: Versione editoriale
Licenza: Tutti i diritti riservati
Dimensione 3.34 MB
Formato Adobe PDF
3.34 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/253544
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact