In this paper we prove the existence of a complete cap of PG(4n+1,q) of size 2(q^(2n+1)-1)/(q-1), for each prime power q>2. It is obtained by projecting two disjoint Veronese varieties of PG(2n^2+3n,q) from a suitable (2n^2-n-2)-dimensional projective space. This shows that the trivial lower bound for the size of the smallest complete cap of PG(4n+1,q) is essentially sharp.

Small complete caps in PG(4n+1,q) / Cossidente, Antonio; Csajbok, Bence; Marino, Giuseppe; Pavese, Francesco. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - STAMPA. - 55:1(2023), pp. 522-535. [10.1112/blms.12743]

Small complete caps in PG(4n+1,q)

Csajbok, Bence;Pavese, Francesco
2023-01-01

Abstract

In this paper we prove the existence of a complete cap of PG(4n+1,q) of size 2(q^(2n+1)-1)/(q-1), for each prime power q>2. It is obtained by projecting two disjoint Veronese varieties of PG(2n^2+3n,q) from a suitable (2n^2-n-2)-dimensional projective space. This shows that the trivial lower bound for the size of the smallest complete cap of PG(4n+1,q) is essentially sharp.
2023
Small complete caps in PG(4n+1,q) / Cossidente, Antonio; Csajbok, Bence; Marino, Giuseppe; Pavese, Francesco. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - STAMPA. - 55:1(2023), pp. 522-535. [10.1112/blms.12743]
File in questo prodotto:
File Dimensione Formato  
2023_Small_complete_caps_in_PG(4n_+_1,_q)_pdfeditoriale.pdf

solo gestori catalogo

Tipologia: Versione editoriale
Licenza: Tutti i diritti riservati
Dimensione 166.38 kB
Formato Adobe PDF
166.38 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/255242
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact