In numerous fields such as aerospace, the environment, and energy supply, ice generation and accretion represent a severe issue. For this reason, numerous methods have been developed for ice formation to be delayed and/or to inhibit ice adhesion to the substrates. Among them, laser micro/nanostructuring of surfaces aiming to obtain superhydrophobic behavior has been taken as a starting point for engineering substrates with anti-icing properties. In this review article, the key concept of surface wettability and its relationship with anti-icing is discussed. Furthermore, a comprehensive overview of the laser strategies to obtain superhydrophobic surfaces with anti-icing behavior is provided, from direct laser writing (DLW) to laser-induced periodic surface structuring (LIPSS), and direct laser interference patterning (DLIP). Micro-/nano-texturing of several materials is reviewed, from aluminum alloys to polymeric substrates.
Laser fabrication of anti-icing surfaces: A review / Volpe, A.; Gaudiuso, C.; Ancona, A.. - In: MATERIALS. - ISSN 1996-1944. - 13:24(2020), pp. 1-24. [10.3390/ma13245692]
Laser fabrication of anti-icing surfaces: A review
Volpe A.
;
2020-01-01
Abstract
In numerous fields such as aerospace, the environment, and energy supply, ice generation and accretion represent a severe issue. For this reason, numerous methods have been developed for ice formation to be delayed and/or to inhibit ice adhesion to the substrates. Among them, laser micro/nanostructuring of surfaces aiming to obtain superhydrophobic behavior has been taken as a starting point for engineering substrates with anti-icing properties. In this review article, the key concept of surface wettability and its relationship with anti-icing is discussed. Furthermore, a comprehensive overview of the laser strategies to obtain superhydrophobic surfaces with anti-icing behavior is provided, from direct laser writing (DLW) to laser-induced periodic surface structuring (LIPSS), and direct laser interference patterning (DLIP). Micro-/nano-texturing of several materials is reviewed, from aluminum alloys to polymeric substrates.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.