Serverless computing enables greater flexibility and efficiency in the cloud-to-edge continuum. Artificial Intelligence and Machine Learning (AI/ML) applications benefit greatly from this paradigm, as they need to gather, preprocess, aggregate and analyze data at various scales. In such contexts, the increasing hardware/software resource availability of Internet of Things (IoT) devices provides the opportunity to exploit them not only as data sources in AI/ML infrastructures, but also as computational nodes for model training and inference; nevertheless, comprehensive frameworks are still mostly missing. This work introduces an innovative serverless computing architecture which expands the cloud-to-edge continuum toward IoT devices. The same functions can run on IoT, edge and cloud nodes with minimal to no code modification and they can be invoked through a uniform interface. A federated learning framework is defined based on the proposed architecture, exploiting an existing IoT-oriented ML algorithm in a novel way. Notably, IoT nodes are used for both federated training and local inference tasks. A full prototype implementation has been built with off-the-shelf technologies and devices. A case study on federated machine learning for activity recognition and experiments have been conducted to validate key elements of the proposal.

Expanding the cloud-to-edge continuum to the IoT in serverless federated learning / Loconte, Davide; Ieva, Saverio; Pinto, Agnese; Loseto, Giuseppe; Scioscia, Floriano; Ruta, Michele. - In: FUTURE GENERATION COMPUTER SYSTEMS. - ISSN 0167-739X. - STAMPA. - 155:(2024), pp. 447-462. [10.1016/j.future.2024.02.024]

Expanding the cloud-to-edge continuum to the IoT in serverless federated learning

Davide Loconte;Saverio Ieva;Agnese Pinto;Floriano Scioscia;Michele Ruta
2024-01-01

Abstract

Serverless computing enables greater flexibility and efficiency in the cloud-to-edge continuum. Artificial Intelligence and Machine Learning (AI/ML) applications benefit greatly from this paradigm, as they need to gather, preprocess, aggregate and analyze data at various scales. In such contexts, the increasing hardware/software resource availability of Internet of Things (IoT) devices provides the opportunity to exploit them not only as data sources in AI/ML infrastructures, but also as computational nodes for model training and inference; nevertheless, comprehensive frameworks are still mostly missing. This work introduces an innovative serverless computing architecture which expands the cloud-to-edge continuum toward IoT devices. The same functions can run on IoT, edge and cloud nodes with minimal to no code modification and they can be invoked through a uniform interface. A federated learning framework is defined based on the proposed architecture, exploiting an existing IoT-oriented ML algorithm in a novel way. Notably, IoT nodes are used for both federated training and local inference tasks. A full prototype implementation has been built with off-the-shelf technologies and devices. A case study on federated machine learning for activity recognition and experiments have been conducted to validate key elements of the proposal.
2024
https://www.sciencedirect.com/science/article/pii/S0167739X24000670
Expanding the cloud-to-edge continuum to the IoT in serverless federated learning / Loconte, Davide; Ieva, Saverio; Pinto, Agnese; Loseto, Giuseppe; Scioscia, Floriano; Ruta, Michele. - In: FUTURE GENERATION COMPUTER SYSTEMS. - ISSN 0167-739X. - STAMPA. - 155:(2024), pp. 447-462. [10.1016/j.future.2024.02.024]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/266460
Citazioni
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact