Powder Bed Fusion-Laser Beam (PBF-LB), a form of additive manufacturing (AM) for Nd-Fe-B permanent magnets, is attracting substantial interest for its ability to process functional magnetic materials while capitalizing on AM's design flexibility and waste reduction. As the demand for rare-earth magnets declines due to scarcity and high costs, AM emerges as a pivotal player in the future of electrical machines. However, crack formation and delamination during laser-based AM hinder the production of hard magnetic Nd-Fe-B components, compromising part integrity. This paper addresses these challenges by successfully controlling laser scan strategies and presenting an approach to minimize delamination. Resin infiltration is explored as a potential solution to mitigate residual cracking. Optimized scan strategies and resin infiltration enhance the structural integrity of printed magnets, meeting specific application requirements. As a vessel to investigate the proposed approach for the AM of Nd-Fe-B magnets, a Permanent Magnet assisted Synchronous Reluctance motor has been designed using a particular shape of permanent magnets enabled by the AM. Experimental results align with the FE findings, showcasing a 12% increase in average torque using PBF-LB-produced permanent magnets. This indicates that AM's enhanced design freedom, unconventional shapes, and minimal post-processing contribute to improved reliability, efficiency, and overall performance
Additive manufacturing of Nd-Fe-B permanent magnets and their application in electrical machines / Julan, Wu; Korman, Oguz; Nardo, Mauro Di; Degano, Michele; Gerada, Chris; Ashcroft, Ian; Hague, Richard J. M.; Aboulkhair, Nesma T.. - In: IEEE ACCESS. - ISSN 2169-3536. - ELETTRONICO. - 12:(2024), pp. 138921-138931. [10.1109/access.2024.3436643]
Additive manufacturing of Nd-Fe-B permanent magnets and their application in electrical machines
Nardo, Mauro Di;
2024
Abstract
Powder Bed Fusion-Laser Beam (PBF-LB), a form of additive manufacturing (AM) for Nd-Fe-B permanent magnets, is attracting substantial interest for its ability to process functional magnetic materials while capitalizing on AM's design flexibility and waste reduction. As the demand for rare-earth magnets declines due to scarcity and high costs, AM emerges as a pivotal player in the future of electrical machines. However, crack formation and delamination during laser-based AM hinder the production of hard magnetic Nd-Fe-B components, compromising part integrity. This paper addresses these challenges by successfully controlling laser scan strategies and presenting an approach to minimize delamination. Resin infiltration is explored as a potential solution to mitigate residual cracking. Optimized scan strategies and resin infiltration enhance the structural integrity of printed magnets, meeting specific application requirements. As a vessel to investigate the proposed approach for the AM of Nd-Fe-B magnets, a Permanent Magnet assisted Synchronous Reluctance motor has been designed using a particular shape of permanent magnets enabled by the AM. Experimental results align with the FE findings, showcasing a 12% increase in average torque using PBF-LB-produced permanent magnets. This indicates that AM's enhanced design freedom, unconventional shapes, and minimal post-processing contribute to improved reliability, efficiency, and overall performance| File | Dimensione | Formato | |
|---|---|---|---|
|
2024_Additive_Manufacturing_of_Nd-Fe-B_Permanent_Magnets_and_Their_Application_in_Electrical_Machines_pdfeditoriale.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
1.57 MB
Formato
Adobe PDF
|
1.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

