Surface engineering of Zr51.3Al8.5Cu31.3Ni4Ti4.9 bulk metallic glass (BMG) by gaseous oxidizing below the glass-transition temperature is investigated as a means to introduce compressive residual stress in the surface region. The ZrCuAl-based BMG was exposed to an extremely low oxygen partial pressure of 10−41 bar at 600 K for 60 h. The oxidizing treatment led to the formation of an internal oxidation zone, consisting of finely dispersed nano-crystalline cubic ZrO2 (c-ZrO2), metallic regions inclined with the surface and Cu-hillocks at the surface. The stresses introduced by the volume expansion associated with oxidation were evaluated from i) the lattice strains within c-ZrO2, as determined with an X-ray diffraction (XRD) based method, and ii) strain-relaxation as a response to annular focused ion beam (FIB) milling, as monitored with digital image correlation (DIC). XRD analysis yielded -1.5 GPa (compressive stress) in the nano-crystalline c-ZrO2, while the strain relaxation monitored with FIB-DIC analysis indicated compressive residual stresses of −1.4 GPa in the internal oxidation zone. The strains and stresses determined with the independent measurement methods are discussed. The quantitative macro-strains are discussed in relation to the microstructural features and stress relaxation mechanisms during evolution of the internal oxidation zone.

Strain, stress and stress relaxation in oxidized ZrCuAl-based bulk metallic glass / Haratian, S.; Niessen, F.; Grumsen, F. B.; Nancarrow, M. J. B.; Pereloma, E. V.; Villa, M.; Christiansen, T. L.; Somers, M. A. J.. - In: ACTA MATERIALIA. - ISSN 1359-6454. - 200:(2020), pp. 674-685. [10.1016/j.actamat.2020.09.049]

Strain, stress and stress relaxation in oxidized ZrCuAl-based bulk metallic glass

Villa M.;
2020-01-01

Abstract

Surface engineering of Zr51.3Al8.5Cu31.3Ni4Ti4.9 bulk metallic glass (BMG) by gaseous oxidizing below the glass-transition temperature is investigated as a means to introduce compressive residual stress in the surface region. The ZrCuAl-based BMG was exposed to an extremely low oxygen partial pressure of 10−41 bar at 600 K for 60 h. The oxidizing treatment led to the formation of an internal oxidation zone, consisting of finely dispersed nano-crystalline cubic ZrO2 (c-ZrO2), metallic regions inclined with the surface and Cu-hillocks at the surface. The stresses introduced by the volume expansion associated with oxidation were evaluated from i) the lattice strains within c-ZrO2, as determined with an X-ray diffraction (XRD) based method, and ii) strain-relaxation as a response to annular focused ion beam (FIB) milling, as monitored with digital image correlation (DIC). XRD analysis yielded -1.5 GPa (compressive stress) in the nano-crystalline c-ZrO2, while the strain relaxation monitored with FIB-DIC analysis indicated compressive residual stresses of −1.4 GPa in the internal oxidation zone. The strains and stresses determined with the independent measurement methods are discussed. The quantitative macro-strains are discussed in relation to the microstructural features and stress relaxation mechanisms during evolution of the internal oxidation zone.
2020
Strain, stress and stress relaxation in oxidized ZrCuAl-based bulk metallic glass / Haratian, S.; Niessen, F.; Grumsen, F. B.; Nancarrow, M. J. B.; Pereloma, E. V.; Villa, M.; Christiansen, T. L.; Somers, M. A. J.. - In: ACTA MATERIALIA. - ISSN 1359-6454. - 200:(2020), pp. 674-685. [10.1016/j.actamat.2020.09.049]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/280352
Citazioni
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact