Mangroves are a natural defence of the coastal strip against extreme waves. Furthermore, innovative techniques of naturally based coast defence are used increasingly, according to the canons of eco-hydraulics. Therefore, it is important to correctly evaluate the transmission of waves through cylinder arrays. In the present paper, the attenuation of solitary waves propagating through an array of rigid emergent and submerged cylindrical stems on a horizontal bottom is investigated theoretically, numerically and experimentally. The results of the theoretical model are compared with the numerical simulations obtained with the smoothed particle hydrodynamics meshless Lagrangian numerical code and with experimental laboratory data. In the latter case, solitary waves were tested on a background current, in order to reproduce more realistic sea conditions, since the absence of circulation currents is very rare in the sea. The comparison confirmed the validity of the theoretical model, allowing its use for the purposes indicated above. Furthermore, the present study allowed for an evaluation of the bulk drag coefficient of the rigid stem arrays used, as a function of their density, the stem diameter, and their submergence ratio.
Damping of solitons by coastal vegetation / Mossa, Michele; De Padova, Diana; Onorato, Miguel. - In: JOURNAL OF FLUID MECHANICS. - ISSN 0022-1120. - 1002:(2025). [10.1017/jfm.2024.1185]
Damping of solitons by coastal vegetation
Mossa, Michele
;De Padova, Diana;
2025-01-01
Abstract
Mangroves are a natural defence of the coastal strip against extreme waves. Furthermore, innovative techniques of naturally based coast defence are used increasingly, according to the canons of eco-hydraulics. Therefore, it is important to correctly evaluate the transmission of waves through cylinder arrays. In the present paper, the attenuation of solitary waves propagating through an array of rigid emergent and submerged cylindrical stems on a horizontal bottom is investigated theoretically, numerically and experimentally. The results of the theoretical model are compared with the numerical simulations obtained with the smoothed particle hydrodynamics meshless Lagrangian numerical code and with experimental laboratory data. In the latter case, solitary waves were tested on a background current, in order to reproduce more realistic sea conditions, since the absence of circulation currents is very rare in the sea. The comparison confirmed the validity of the theoretical model, allowing its use for the purposes indicated above. Furthermore, the present study allowed for an evaluation of the bulk drag coefficient of the rigid stem arrays used, as a function of their density, the stem diameter, and their submergence ratio.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.