The Degasperis–Procesi equation can be regarded as a model for shallow water dynamics and its asymptotic accuracy is the same as for the Camassa–Holm equation. Here we consider a generalization of the Degasperis–Procesi equation and prove the existence and uniqueness of H2 solutions for the Cauchy problem.

$H^{2}$ solutions for a Degasperis–Procesi-type equation / Coclite, Giuseppe Maria; di Ruvo, Lorenzo. - In: RENDICONTI DEL SEMINARIO MATEMATICO DELL'UNIVERSITA' DI PADOVA. - ISSN 0041-8994. - STAMPA. - 153:(2025), pp. 221-241. [10.4171/rsmup/158]

$H^{2}$ solutions for a Degasperis–Procesi-type equation

Coclite, Giuseppe Maria
;
2025

Abstract

The Degasperis–Procesi equation can be regarded as a model for shallow water dynamics and its asymptotic accuracy is the same as for the Camassa–Holm equation. Here we consider a generalization of the Degasperis–Procesi equation and prove the existence and uniqueness of H2 solutions for the Cauchy problem.
2025
https://ems.press/content/serial-article-files/50309
$H^{2}$ solutions for a Degasperis–Procesi-type equation / Coclite, Giuseppe Maria; di Ruvo, Lorenzo. - In: RENDICONTI DEL SEMINARIO MATEMATICO DELL'UNIVERSITA' DI PADOVA. - ISSN 0041-8994. - STAMPA. - 153:(2025), pp. 221-241. [10.4171/rsmup/158]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/286420
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact