In this study, we investigate a plane metamaterial made up of a periodic grid of shear-deformable rods with rigid finite-size joints, subjected to a biaxial macro-stress state. We derive closed-form solutions for the stability domains by means of Floquet-Bloch theory. Remarkably, this analytical modeling enable us to determine how the size of the rigid joints yields to transition from macroscopic to microscopic critical modes (i.e. pattern transformation) for specific macro-stress states. We also examine a minimum weight problem for this class of metamaterials. The analytical model predictivity in describing multiscale instabilities is validated by comparisons with experimental findings and numerical analyses.

Tailored multiscale instabilities in a grid metamaterial / Marasciuolo, N.; De Tommasi, D.; Trentadue, F.; Vitucci, G.. - In: EXTREME MECHANICS LETTERS. - ISSN 2352-4316. - 75:(2025). [10.1016/j.eml.2024.102284]

Tailored multiscale instabilities in a grid metamaterial

Marasciuolo N.
;
De Tommasi D.;Trentadue F.;Vitucci G.
2025

Abstract

In this study, we investigate a plane metamaterial made up of a periodic grid of shear-deformable rods with rigid finite-size joints, subjected to a biaxial macro-stress state. We derive closed-form solutions for the stability domains by means of Floquet-Bloch theory. Remarkably, this analytical modeling enable us to determine how the size of the rigid joints yields to transition from macroscopic to microscopic critical modes (i.e. pattern transformation) for specific macro-stress states. We also examine a minimum weight problem for this class of metamaterials. The analytical model predictivity in describing multiscale instabilities is validated by comparisons with experimental findings and numerical analyses.
2025
Tailored multiscale instabilities in a grid metamaterial / Marasciuolo, N.; De Tommasi, D.; Trentadue, F.; Vitucci, G.. - In: EXTREME MECHANICS LETTERS. - ISSN 2352-4316. - 75:(2025). [10.1016/j.eml.2024.102284]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/286501
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact