The detection of the islanding condition of a distributed generation (DG) system is crucial for safety reasons, as discussed in the IEEE standards and specifically required by some national codes. Several anti-islanding methods that are resident in the inverter have been investigated and classified as passive (measurement of the natural effects of islanding) or active (based on the measurement of the effects due to transients or harmonics deliberately introduced in the system). In case the power drained by the load matches the power generated by the DG inverter, the effect of islanding is small, and the passive methods fail. However, the active methods, which have been developed to overcome these limits, create disturbances that can interact with those generated by other DG systems. In this paper, a new anti-islanding method is proposed. It exploits the natural sensitivity of a grid-voltage sensorless control to disturbances to highlight the islanding condition. The adopted grid-voltage sensorless control is adapted to a single-phase system with the use of resonant controllers based on the internal model control law: resonant-controller-based observer results. Then, a Kalman-filter-based algorithm is used to detect the islanding condition based on the energy mismatch between the estimated third and fifth harmonics and the real ones. Experimental results support the analysis.
An anti-islanding method for single-phase inverters based on a grid voltage sensorless control / Liserre, Marco; Pigazo, A.; Dell'Aquila, A.; Moreno, V. M.. - In: IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS. - ISSN 0278-0046. - 53:5(2006), pp. 1418-1426. [10.1109/TIE.2006.882003]
An anti-islanding method for single-phase inverters based on a grid voltage sensorless control
LISERRE, Marco;
2006-01-01
Abstract
The detection of the islanding condition of a distributed generation (DG) system is crucial for safety reasons, as discussed in the IEEE standards and specifically required by some national codes. Several anti-islanding methods that are resident in the inverter have been investigated and classified as passive (measurement of the natural effects of islanding) or active (based on the measurement of the effects due to transients or harmonics deliberately introduced in the system). In case the power drained by the load matches the power generated by the DG inverter, the effect of islanding is small, and the passive methods fail. However, the active methods, which have been developed to overcome these limits, create disturbances that can interact with those generated by other DG systems. In this paper, a new anti-islanding method is proposed. It exploits the natural sensitivity of a grid-voltage sensorless control to disturbances to highlight the islanding condition. The adopted grid-voltage sensorless control is adapted to a single-phase system with the use of resonant controllers based on the internal model control law: resonant-controller-based observer results. Then, a Kalman-filter-based algorithm is used to detect the islanding condition based on the energy mismatch between the estimated third and fifth harmonics and the real ones. Experimental results support the analysis.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.