Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
POLITECNICO DI BARI - Catalogo dei prodotti della Ricerca
Context. Geminga is the third gamma-ray pulsar firmly detected by imaging atmospheric Cherenkov telescopes (IACTs) after the Crab and the Vela pulsars. Most of its emission is expected at tens of giga-electronvolts, and, out of the planned telescopes of the upcoming Cherenkov Telescope Array Observatory (CTAO), the Large-Sized Telescopes (LSTs) are the only ones with optimised sensitivity at these energies. Aims. We aim to characterise the gamma-ray pulse shape and spectrum of Geminga as observed by the first LST (hereafter LST-1) of the Northern Array of CTAO. Furthermore, this study confirms the great performance and the improved energy threshold of the telescope, as low as 10 GeV for pulsar analysis, with respect to current-generation Cherenkov telescopes. Methods. We analysed 60 hours of good-quality data taken by the LST-1 between December 2022 and March 2024 at zenith angles below 50◦. Additionally, a new Fermi-LAT analysis of 16.6 years of data was carried out to extend the spectral analysis down to 100 MeV. Lastly, a detailed study of the systematic effects was performed. Results. We report the detection of Geminga in the energy range between 20 and 65 GeV. Of the two peaks of the phaseogram, the second one, P2, is detected with a significance of 12.2σ, while the first (P1) reaches a significance level of 2.6σ. The best-fit model for the spectrum of P2 was found to be a power law with a spectral index of Γ = (4.5±0.4stat)−+0062syssys, compatible with the previous results obtained by the MAGIC Collaboration. No evidence of curvature is found in the LST-1 energy range. The joint fit with Fermi-LAT data confirms a preference for a sub-exponential cut-off over a pure exponential, even though both models fail to reproduce the data above several tens of giga-electronvolts. The overall results presented in this paper prove that the LST-1 is an excellent telescope for the observation of pulsars, and improved sensitivity is expected to be achieved with the full CTAO Northern Array.
Detection of the Geminga pulsar at energies down to 20 GeV with the LST-1 of CTAO / Abe, K.; Abe, S.; Abhishek, A.; Acero, F.; Aguasca-Cabot, A.; Agudo, I.; Alispach, C.; Ambrosino, D.; Ambrosino, F.; Antonelli, L. A.; Aramo, C.; Arbet-Engels, A.; Arcaro, C.; Arnesen, T. T. H.; Asano, K.; Aubert, P.; Baktash, A.; Balbo, M.; Bamba, A.; Baquero Larriva, A.; Barres De Almeida, U.; Barrio, J. A.; Barrios Jiménez, L.; Batkovic, I.; Baxter, J.; Becerra González, J.; Bernardini, E.; Bernete, J.; Berti, A.; Bezshyiko, I.; Bigongiari, C.; Bissaldi, E.; Blanch, O.; Bonnoli, G.; Bordas, P.; Borkowski, G.; Brunelli, G.; Bulgarelli, A.; Bunse, M.; Burelli, I.; Burmistrov, L.; Cardillo, M.; Caroff, S.; Carosi, A.; Carraro, R.; Carrasco, M. S.; Cassol, F.; Castrejón, N.; Cerasole, D.; Ceribella, G.; Cerviño Cortínez, A.; Chai, Y.; Cheng, K.; Chiavassa, A.; Chikawa, M.; Chon, G.; Chytka, L.; Cicciari, G. M.; Cifuentes, A.; Contreras, J. L.; Cortina, J.; Costantini, H.; Dalchenko, M.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Bony De Lavergne, M.; Del Burgo, R.; Delgado, C.; Delgado Mengual, J.; Dellaiera, M.; Della Volpe, D.; De Lotto, B.; Del Peral, L.; De Menezes, R.; De Palma, G.; Díaz, C.; Di Piano, A.; Di Pierro, F.; Di Tria, R.; Di Venere, L.; Dominik, R. M.; Dominis Prester, D.; Donini, A.; Dore, D.; Dorner, D.; Doro, M.; Eisenberger, L.; Elsässer, D.; Emery, G.; Escudero, J.; Fallah Ramazani, V.; Ferrarotto, F.; Fiasson, A.; Foffano, L.; Fröse, S.; Fukazawa, Y.; Gallozzi, S.; Garcia López, R.; Garcia Soto, S.; Gasbarra, C.; Gasparrini, D.; Geyer, D.; Giesbrecht Paiva, J.; Giglietto, N.; Giordano, F.; Godinovic, N.; Gradetzke, T.; Grau, R.; Green, D.; Green, J.; Gunji, S.; Günther, P.; Hackfeld, J.; Hadasch, D.; Hahn, A.; Hashizume, M.; Hassan, T.; Hayashi, K.; Heckmann, L.; Heller, M.; Herrera Llorente, J.; Hirotani, K.; Hoffmann, D.; Horns, D.; Houles, J.; Hrabovsky, M.; Hrupec, D.; Hui, D.; Iarlori, M.; Imazawa, R.; Inada, T.; Inome, Y.; Inoue, S.; Ioka, K.; Iori, M.; Itokawa, T.; Iuliano, A.; Jahanvi, J.; Jimenez Martinez, I.; Jimenez Quiles, J.; Jorge Rodrigo, I.; Jurysek, J.; Kagaya, M.; Kalashev, O.; Karas, V.; Katagiri, H.; Kerszberg, D.; Kiyomot, T.; Kobayashi, Y.; Kohri, K.; Kong, A.; Kornecki, P.; Kubo, H.; Kushida, J.; Lacave, B.; Lainez, M.; Lamanna, G.; Lamastra, A.; Lemoigne, L.; Linhoff, M.; Lombardi, S.; Longo, F.; López-Coto, R.; López-Moya, M.; López-Oramas, A.; Loporchio, S.; Lorini, A.; Lozano Bahilo, J.; Lucarelli, F.; Luciani, H.; Luque-Escamilla, P. L.; Majumdar, P.; Makariev, M.; Mallamaci, M.; Mandat, D.; Manganaro, M.; Maniadakis, D. K.; Manicò, G.; Mannheim, K.; Marchesi, S.; Marini, F.; Mariotti, M.; Marquez, P.; Marsella, G.; Martí, J.; Martinez, O.; Martínez, G.; Martínez, M.; Mas-Aguilar, A.; Massa, M.; Maurin, G.; Mazin, D.; Méndez-Gallego, J.; Menon, S.; Mestre Guillen, E.; Micanovic, S.; Miceli, D.; Miener, T.; Miranda, J. M.; Mirzoyan, R.; Mizote, M.; Mizuno, T.; Molero Gonzalez, M.; Molina, E.; Montaruli, T.; Moralejo, A.; Morcuende, D.; Moreno Ramos, A.; Morselli, A.; Moya, V.; Muraishi, H.; Nagataki, S.; Nakamori, T.; Neronov, A.; Nieto Castaño, D.; Nievas Rosillo, M.; Nikolic, L.; Nishijima, K.; Noda, K.; Nosek, D.; Novotny, V.; Nozaki, S.; Ohishi, M.; Ohtani, Y.; Oka, T.; Okumura, A.; Orito, R.; Orsini, L.; Otero-Santos, J.; Ottanelli, P.; Palatiello, M.; Panebianco, G.; Paneque, D.; Pantaleo, F. R.; Paoletti, R.; Paredes, J. M.; Pech, M.; Pecimotika, M.; Peresano, M.; Pfeifle, F.; Pietropaolo, E.; Pihet, M.; Pirola, G.; Plard, C.; Podobnik, F.; Polo, M.; Prandini, E.; Prouza, M.; Rainò, S.; Rando, R.; Rhode, W.; Ribó, M.; Rizi, V.; Rodriguez Fernandez, G.; Rodríguez Frías, M. D.; Romano, P.; Roy, A.; Ruina, A.; Ruiz-Velasco, E.; Saito, T.; Sakurai, S.; Sanchez, D. A.; Sano, H.; Šarić, T.; Sato, Y.; Saturni, F. G.; Savchenko, V.; Schiavone, F.; Schleicher, B.; Schmuckermaier, F.; Schubert, J. L.; Schussler, F.; Schweizer, T.; Seglar Arroyo, M.; Siegert, T.; Silvestri, G.; Simongini, A.; Sitarek, J.; Sliusar, V.; Stamerra, A.; Strišković, J.; Strzys, M.; Suda, Y.; Sunny, A.; Tajima, H.; Takahashi, M.; Takata, J.; Takeishi, R.; Tam, P. H. T.; Tanaka, S. J.; Tateishi, D.; Tavernier, T.; Temnikov, P.; Terada, Y.; Terauchi, K.; Terzic, T.; Teshima, M.; Tluczykont, M.; Tokanai, F.; Tomura, T.; Torres, D. F.; Tramonti, F.; Travnicek, P.; Tripodo, G.; Tutone, A.; Vacula, M.; Van Scherpenberg, J.; Vázquez Acosta, M.; Ventura, S.; Vercellone, S.; Verna, G.; Viale, I.; Vigliano, A.; Vigorito, C. F.; Visentin, E.; Vitale, V.; Voitsekhovskyi, V.; Voutsinas, G.; Vovk, I.; Vuillaume, T.; Walter, R.; Wan, L.; Will, M.; Wójtowicz, J.; Yamamoto, T.; Yamazaki, R.; Yao, Y.; Yeung, P. K. H.; Yoshida, T.; Yoshikoshi, T.; Zhang, W.. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 698:(2025). [10.1051/0004-6361/202554350]
Detection of the Geminga pulsar at energies down to 20 GeV with the LST-1 of CTAO
Context. Geminga is the third gamma-ray pulsar firmly detected by imaging atmospheric Cherenkov telescopes (IACTs) after the Crab and the Vela pulsars. Most of its emission is expected at tens of giga-electronvolts, and, out of the planned telescopes of the upcoming Cherenkov Telescope Array Observatory (CTAO), the Large-Sized Telescopes (LSTs) are the only ones with optimised sensitivity at these energies. Aims. We aim to characterise the gamma-ray pulse shape and spectrum of Geminga as observed by the first LST (hereafter LST-1) of the Northern Array of CTAO. Furthermore, this study confirms the great performance and the improved energy threshold of the telescope, as low as 10 GeV for pulsar analysis, with respect to current-generation Cherenkov telescopes. Methods. We analysed 60 hours of good-quality data taken by the LST-1 between December 2022 and March 2024 at zenith angles below 50◦. Additionally, a new Fermi-LAT analysis of 16.6 years of data was carried out to extend the spectral analysis down to 100 MeV. Lastly, a detailed study of the systematic effects was performed. Results. We report the detection of Geminga in the energy range between 20 and 65 GeV. Of the two peaks of the phaseogram, the second one, P2, is detected with a significance of 12.2σ, while the first (P1) reaches a significance level of 2.6σ. The best-fit model for the spectrum of P2 was found to be a power law with a spectral index of Γ = (4.5±0.4stat)−+0062syssys, compatible with the previous results obtained by the MAGIC Collaboration. No evidence of curvature is found in the LST-1 energy range. The joint fit with Fermi-LAT data confirms a preference for a sub-exponential cut-off over a pure exponential, even though both models fail to reproduce the data above several tens of giga-electronvolts. The overall results presented in this paper prove that the LST-1 is an excellent telescope for the observation of pulsars, and improved sensitivity is expected to be achieved with the full CTAO Northern Array.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/293682
Citazioni
1
1
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.