The landmark discovery that neutrinos have mass and can change type (or flavour) as they propagate—a process called neutrino oscillation1, 2, 3, 4, 5–6—has opened up a rich array of theoretical and experimental questions being actively pursued today. Neutrino oscillation remains the most powerful experimental tool for addressing many of these questions, including whether neutrinos violate charge-parity (CP) symmetry, which has possible connections to the unexplained preponderance of matter over antimatter in the Universe7, 8, 9, 10–11. Oscillation measurements also probe the mass-squared differences between the different neutrino mass states (Δm2), whether there are two light states and a heavier one (normal ordering) or vice versa (inverted ordering), and the structure of neutrino mass and flavour mixing12. Here we carry out the first joint analysis of datasets from NOvA13 and T2K14, the two currently operating long-baseline neutrino oscillation experiments (hundreds of kilometres of neutrino travel distance), taking advantage of our complementary experimental designs and setting new constraints on several neutrino sector parameters. This analysis provides new precision on the Δm322 mass difference, finding 2.43−0.03+0.04×10−3eV2 in the normal ordering and −2.48−0.04+0.03×10−3eV2 in the inverted ordering, as well as a 3σ interval on δCP of [−1.38π, 0.30π] in the normal ordering and [−0.92π, −0.04π] in the inverted ordering. The data show no strong preference for either mass ordering, but notably, if inverted ordering were assumed true within the three-flavour mixing model, then our results would provide evidence of CP symmetry violation in the lepton sector.
Joint neutrino oscillation analysis from the T2K and NOvA experiments / Null, Null; Abubakar, S.; Acero, M. A.; Acharya, B.; Adamson, P.; Anfimov, N.; Antoshkin, A.; Arrieta-Diaz, E.; Asquith, L.; Aurisano, A.; Azevedo, D.; Back, A.; Balashov, N.; Baldi, P.; Bambah, B. A.; Bannister, E. F.; Barros, A.; Bat, A.; Bays, K.; Bernstein, R.; Bezerra, T. J. C.; Bhatnagar, V.; Bhuyan, B.; Bian, J.; Booth, A. C.; Bowles, R.; Brahma, B.; Bromberg, C.; Buchanan, N.; Butkevich, A.; Calvez, S.; Carceller, J. M.; Carroll, T. J.; Catano-Mur, E.; Cesar, J. P.; Chirco, R.; Choudhary, B. C.; Christensen, A.; Cicala, M. F.; Coan, T. E.; Contreras, T.; Cooleybeck, A.; Coveyou, D.; Cremonesi, L.; Davies, G. S.; Derwent, P. F.; Ding, P.; Djurcic, Z.; Dobbs, K.; Dolce, M.; Dueñas Tonguino, D.; Dukes, E. C.; Dye, A.; Ehrlich, R.; Ewart, E.; Filip, P.; Frank, M. J.; Gallagher, H. R.; Giri, A.; Gomes, R. A.; Goodman, M. C.; Group, R.; Habig, A.; Hakl, F.; Hartnell, J.; Hatcher, R.; Hays, J. M.; He, M.; Heller, K.; Hewes, V.; Himmel, A.; Horoho, T.; Ivanova, A.; Jargowsky, B.; Kakorin, I.; Kalitkina, A.; Kaplan, D. M.; Khanam, A.; Kirezli, B.; Kleykamp, J.; Klimov, O.; Koerner, L. W.; Kolupaeva, L.; Kralik, R.; Kumar, A.; Kuruppu, C. D.; Kus, V.; Lackey, T.; Lang, K.; Lasorak, P.; Lesmeister, J.; Lister, A.; Liu, J.; Lock, J. A.; Macmahon, M.; Magill, S.; Mann, W. A.; Manoharan, M. T.; Manrique Plata, M.; Marshak, M. L.; Martinez-Casales, M.; Matveev, V.; Mehta, B.; Messier, M. D.; Meyer, H.; Miao, T.; Miller, W. H.; Mishra, S. R.; Mohanta, R.; Moren, A.; Morozova, A.; Mu, W.; Mualem, L.; Muether, M.; Mulder, K.; Myers, D.; Naples, D.; Nelleri, S.; Nelson, J. K.; Nichol, R.; Niner, E.; Norman, A.; Norrick, A.; Oh, H.; Olshevskiy, A.; Olson, T.; Ozkaynak, M.; Pal, A.; Paley, J.; Panda, L.; Patterson, R. B.; Pawloski, G.; Petti, R.; Plunkett, R. K.; Porter, J. C. C.; Prais, L. R.; Rafique, A.; Raj, V.; Rajaoalisoa, M.; Ramson, B.; Rebel, B.; Robles, E.; Roy, P.; Samoylov, O.; Sanchez, M. C.; Sánchez Falero, S.; Shanahan, P.; Sharma, P.; Sheshukov, A.; Shivam, Null; Shmakov, A.; Shorrock, W.; Shukla, S.; Singh, I.; Singh, P.; Singh, V.; Singh Chhibra, S.; Singha, D. K.; Smith, A.; Smolik, J.; Snopok, P.; Solomey, N.; Sousa, A.; Soustruznik, K.; Strait, M.; Suter, L.; Sutton, A.; Swain, S.; Sweeney, C.; Sztuc, A.; Talukdar, N.; Tas, P.; Thakore, T.; Thomas, J.; Tiras, E.; Titus, M.; Torun, Y.; Tran, D.; Trokan-Tenorio, J.; Urheim, J.; Vahle, P.; Vallari, Z.; Vockerodt, K. J.; Waldron, A. V.; Wallbank, M.; Warburton, T. K.; Weber, C.; Wetstein, M.; Whittington, D.; Wickremasinghe, D. A.; Wolcott, J.; Wu, S.; Wu, W.; Wu, W.; Xiao, Y.; Yaeggy, B.; Yahaya, A.; Yankelevich, A.; Yonehara, K.; Zadorozhnyy, S.; Zalesak, J.; Zwaska, R.; Null, Null; Abe, K.; Abe, S.; Adhkary, H.; Akutsu, R.; Alarakia-Charles, H.; Hakim, Y. I. Alj; Monsalve, S. Alonso; Anthony, L.; Aoki, S.; Apte, K. A.; Arai, T.; Arihara, T.; Arimoto, S.; Ashida, Y.; Atkin, E. T.; Babu, N.; Baranov, V.; Barker, G. J.; Barr, G.; Barrow, D.; Bates, P.; Bathe-Peters, L.; Batkiewicz-Kwasniak, M.; Baudis, N.; Berardi, V.; Berns, L.; Bhattacharjee, S.; Blanchet, A.; Blondel, A.; Boistier, P. M. M.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Bronner, C.; Bubak, A.; Buizza Avanzini, M.; Caballero, J. A.; Cadoux, F.; Calabria, N. F.; Cao, S.; Cap, S.; Carabadjac, D.; Cartwright, S. L.; Casado, M. P.; Catanesi, M. G.; Chakrani, J.; Chalumeau, A.; Cherdack, D.; Chvirova, A.; Coleman, J.; Collazuol, G.; Cormier, F.; Craplet, A. A. L.; Cudd, A.; D'Ago, D.; Dalmazzone, C.; Daret, T.; Dasgupta, P.; Davis, C.; Davydov, Yu. I.; de , ; Perio, P.; De Rosa, G.; Dealtry, T.; Densham, C.; Dergacheva, A.; Dharmapal Banerjee, R.; Di Lodovico, F.; Diaz Lopez, G.; Dolan, S.; Douqa, D.; Doyle, T. A.; Drapier, O.; Duffy, K. E.; Dumarchez, J.; Dunne, P.; Dygnarowicz, K.; Eguchi, A.; Elias, J.; Emery-Schrenk, S.; Erofeev, G.; Ershova, A.; Eurin, G.; Fedorova, D.; Fedotov, S.; Feltre, M.; Feng, L.; Ferlewicz, D.; Finch, A. J.; Fitton, M. D.; Forza, C.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furui, Y.; García-Marcos, J.; Germer, A. C.; Giannessi, L.; Giganti, C.; Girgus, M.; Glagolev, V.; Gonin, M.; González Jiménez, R.; González Rosa, J.; Goodman, E. A. G.; Gorshanov, K.; Govindaraj, P.; Grassi, M.; Guigue, M.; Guo, F. Y.; Hadley, D. R.; Han, S.; Harris, D. A.; Harris, R. J.; Hasegawa, T.; Hasnip, C. M.; Hassani, S.; Hastings, N. C.; Hayato, Y.; Heitkamp, I.; Henaff, D.; Hino, Y.; Holeczek, J.; Holin, A.; Holvey, T.; Hong Van, N. T.; Honjo, T.; Hooft, M. C. F.; Hosokawa, K.; Hu, J.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Ishida, T.; Ishitsuka, M.; Izmaylov, A.; Jachowicz, N.; Jenkins, S. J.; Jesús-Valls, C.; Jia, M.; Jiang, J. J.; Ji, J. Y.; Jones, T. P.; Jonsson, P.; Joshi, S.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kakuno, H.; Kameda, J.; Karpova, S.; Kasturi, V. S.; Kataoka, Y.; Katori, T.; Kawamura, Y.; Kawaue, M.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kikawa, T.; King, S.; Kiseeva, V.; Kisiel, J.; Klustová, A.; Kneale, L.; Kobayashi, H.; Koch, L.; Kodama, S.; Kolupanova, M.; Konaka, A.; Kormos, L. L.; Koshio, Y.; Kowalik, K.; Kudenko, Y.; Kudo, Y.; Kumar Jha, A.; Kurjata, R.; Kurochka, V.; Kutter, T.; Labarga, L.; Lachat, M.; Lachner, K.; Lagoda, J.; Lakshmi, S. M.; Lamers James, M.; Langella, A.; Langridge, D. H.; Laporte, J. -F.; Last, D.; Latham, N.; Laveder, M.; Lavitola, L.; Lawe, M.; Leon Silverio, D.; Levorato, S.; Lewis, S. V.; Li, B.; Lin, C.; Litchfield, R. P.; Liu, S. L.; Li, W.; Longhin, A.; Lopez Moreno, A.; Ludovici, L.; Lu, X.; Lux, T.; Machado, L. N.; Magaletti, L.; Mahn, K.; Mahtani, K. K.; Mandal, M.; Manly, S.; Marino, A. D.; Martin, D. G. R.; Martinez Caicedo, D. A.; Martinez, L.; Martini, M.; Matsubara, T.; Matsumoto, R.; Matveev, V.; Mauger, C.; Mavrokoridis, K.; Mccauley, N.; Mcfarland, K. S.; Mcgrew, C.; Mckean, J.; Mefodiev, A.; Megias, G. D.; Mellet, L.; Metelko, C.; Mezzetto, M.; Miki, S.; Mikola, V.; Miller, E. W.; Minamino, A.; Mineev, O.; Mine, S.; Mirabito, J.; Miura, M.; Moriyama, S.; Moriyama, S.; Morrison, P.; Mueller, Th. A.; Munford, D.; Muñoz, A.; Munteanu, L.; Nagai, Y.; Nakadaira, T.; Nakagiri, K.; Nakahata, M.; Nakajima, Y.; Nakamura, K. D.; Nakano, Y.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naseby, C. E. R.; Nguyen, D. T.; Nguyen, V. Q.; Niewczas, K.; Nishimori, S.; Nishimura, Y.; Noguchi, Y.; Nosek, T.; Nova, F.; Nugent, J. C.; O'Keeffe, H. M.; O'Sullivan, L.; Okazaki, R.; Okinaga, W.; Okumura, K.; Okusawa, T.; Onda, N.; Ospina, N.; Osu, L.; Oyama, Y.; Paolone, V.; Pasternak, J.; Payne, D.; Peacock, T.; Pfaff, M.; Pickering, L.; Popov, B.; Portocarrero Yrey, A. J.; Posiadala-Zezula, M.; Prabhu, Y. S.; Prasad, H.; Pupilli, F.; Quilain, B.; Quyen, P. T.; Radicioni, E.; Radics, B.; Ramirez, M. A.; Ramsden, R.; Ratoff, P. N.; Reh, M.; Reina, G.; Riccio, C.; Riley, D. W.; Rondio, E.; Roth, S.; Roy, N.; Rubbia, A.; Russo, L.; Rychter, A.; Saenz, W.; Sakashita, K.; Samani, S.; Sánchez, F.; Sandford, E. M.; Sato, Y.; Schefke, T.; Schloesser, C. M.; Scholberg, K.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sekiya, T.; Seppala, D.; Sgalaberna, D.; Shaikhiev, A.; Shiozawa, M.; Shiraishi, Y.; Shvartsman, A.; Skrobova, N.; Skwarczynski, K.; Smyczek, D.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Soler, F. J. P.; Speers, A. J.; Spina, R.; Srivastava, A.; Stowell, P.; Stroke, Y.; Suslov, I. A.; Suzuki, A.; Suzuki, S. Y.; Tada, M.; Tairafune, S.; Takeda, A.; Teklu, A.; Takeuchi, Y.; Tanaka, H. K.; Tanigawa, H.; Tereshchenko, V. V.; Thamm, N.; Touramanis, C.; Tran, N.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vagins, M.; Varghese, M.; Vasilyev, I.; Vasseur, G.; Villa, E.; Virginet, U.; Vladisavljevic, T.; Wachala, T.; Wakabayashi, D.; Wallace, H. T.; Walsh, J. G.; Wan, L.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilking, M. J.; Wilkinson, C.; Wilson, J. R.; Wood, K.; Wret, C.; Xia, J.; Yamamoto, K.; Yamamoto, T.; Yanagisawa, C.; Yang, Y.; Yano, T.; Yershov, N.; Yevarouskaya, U.; Yokoyama, M.; Yoshimoto, Y.; Yoshimura, N.; Zaki, R.; Zalewska, A.; Zalipska, J.; Zarnecki, G.; Zhang, J.; Zhao, X. Y.; Zheng, H.; Zhong, H.; Zhu, T.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Zsoldos, S.. - In: NATURE. - ISSN 0028-0836. - ELETTRONICO. - 646:8086(2025), pp. 818-824. [10.1038/s41586-025-09599-3]
Joint neutrino oscillation analysis from the T2K and NOvA experiments
Berardi, V.Membro del Collaboration Group
;Calabria, N. F.Membro del Collaboration Group
;Magaletti, L.Membro del Collaboration Group
;Spina, R.Membro del Collaboration Group
;
2025
Abstract
The landmark discovery that neutrinos have mass and can change type (or flavour) as they propagate—a process called neutrino oscillation1, 2, 3, 4, 5–6—has opened up a rich array of theoretical and experimental questions being actively pursued today. Neutrino oscillation remains the most powerful experimental tool for addressing many of these questions, including whether neutrinos violate charge-parity (CP) symmetry, which has possible connections to the unexplained preponderance of matter over antimatter in the Universe7, 8, 9, 10–11. Oscillation measurements also probe the mass-squared differences between the different neutrino mass states (Δm2), whether there are two light states and a heavier one (normal ordering) or vice versa (inverted ordering), and the structure of neutrino mass and flavour mixing12. Here we carry out the first joint analysis of datasets from NOvA13 and T2K14, the two currently operating long-baseline neutrino oscillation experiments (hundreds of kilometres of neutrino travel distance), taking advantage of our complementary experimental designs and setting new constraints on several neutrino sector parameters. This analysis provides new precision on the Δm322 mass difference, finding 2.43−0.03+0.04×10−3eV2 in the normal ordering and −2.48−0.04+0.03×10−3eV2 in the inverted ordering, as well as a 3σ interval on δCP of [−1.38π, 0.30π] in the normal ordering and [−0.92π, −0.04π] in the inverted ordering. The data show no strong preference for either mass ordering, but notably, if inverted ordering were assumed true within the three-flavour mixing model, then our results would provide evidence of CP symmetry violation in the lepton sector.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

