Strong solvability in the Sobolev space W-2, (p)(Omega) is proved for the oblique derivative problem Sigma (j, i=1)n a(ij)(x)D(ij)u = f(x) almost everywhere in Omega, partial derivativeu/partial derivativel + sigma (x)u = phi (x) in the trace sense on partial derivative Omega in the case when the vector field l(x) has a contact of infinite order with partial derivative Omega at the points of some non-empty subset E subset of partial derivative Omega.

A singular boundary value problem for uniformly elliptic operators

Palagachev, DK;
2001-01-01

Abstract

Strong solvability in the Sobolev space W-2, (p)(Omega) is proved for the oblique derivative problem Sigma (j, i=1)n a(ij)(x)D(ij)u = f(x) almost everywhere in Omega, partial derivativeu/partial derivativel + sigma (x)u = phi (x) in the trace sense on partial derivative Omega in the case when the vector field l(x) has a contact of infinite order with partial derivative Omega at the points of some non-empty subset E subset of partial derivative Omega.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/4290
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact